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a b s t r a c t

In order to understand the development of non-genetically encoded actions during an animal’s lifespan,
it is necessary to analyze the dynamics and evolution of learning rules producing behavior. Owing to
the intrinsic stochastic and frequency-dependent nature of learning dynamics, these rules are often
studied in evolutionary biology via agent-based computer simulations. In this paper, we show that
stochastic approximation theory can help to qualitatively understand learning dynamics and formulate
analytical models for the evolution of learning rules. We consider a population of individuals repeatedly
interacting during their lifespan, and where the stage game faced by the individuals fluctuates according
to an environmental stochastic process. Individuals adjust their behavioral actions according to learning
rules belonging to the class of experience-weighted attraction learning mechanisms, which includes
standard reinforcement and Bayesian learning as special cases. We use stochastic approximation theory
in order to derive differential equations governing action play probabilities, which turn out to have
qualitative features of mutator-selection equations. We then perform agent-based simulations to find
the conditions where the deterministic approximation is closest to the original stochastic learning
process for standard 2-action 2-player fluctuating games, where interaction between learning rules and
preference reversal may occur. Finally, we analyze a simplified model for the evolution of learning in
a producer–scrounger game, which shows that the exploration rate can interact in a non-intuitive way
with other features of co-evolving learning rules. Overall, our analyses illustrate the usefulness of applying
stochastic approximation theory in the study of animal learning.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The abundance of resources and the environments to which
organisms are exposed vary in space and time. Organisms are thus
facing complex fluctuating biotic and abiotic conditions to which
they must constantly adjust (Shettleworth, 2009; Dugatkin, 2010).

Animals have a nervous system, which can encode behavioral
rules allowing them to adjust their actions to changing environ-
mental conditions (Shettleworth, 2009; Dugatkin, 2010). In par-
ticular, the presence of a reward system allows an individual to
reinforce actions increasing satisfaction and material rewards and
thereby adjust behavior by learning to produce goal-oriented ac-
tion paths (Thorndike, 1911; Herrnstein, 1970; Sutton and Barto,
1998; Niv, 2009). It is probable that behaviors as different as for-
aging, mating, fighting, cooperating, nest building, or information
gathering all involve adjustment of actions to novel environmental
conditions by learning, as they have evolved to be performed un-
der various ecological contexts andwith different interaction part-
ners (Hollis et al., 1995; Chalmeau, 1994; Villarreal and Domjan,
1998; Walsh et al., 2011; Plotnik et al., 2011).
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In the fields of evolutionary biology and behavioral ecology
there is a growing interest in understanding how natural selection
shapes the learning levels and abilities of animals, but this is met
with difficulties (McNamara and Houston, 2009; Hammerstein
and Stevens, 2012; Fawcett et al., 2013; Lotem, 2013). Focusing
on situation specific actions does not help to understand the
effects of natural selection on behavioral rules because one focuses
on produced behavior and not the rules producing the behavior
(e.g., Dijker, 2011). In order to understand the dynamics and
evolution of learning mechanisms and other behavioral rules, an
evolutionary analysis thus has to consider explicitly the dynamics
of state variables on two timescales. First, one has to consider
the timescale of an individual’s lifespan; that is, the behavioral
timescale during which genetically encoded behavioral rules
produce a dynamic sequence of actions taken by the animal.
Second, there is the generational timescale, duringwhich selection
occurs on the behavioral rules themselves.

It is the behavioral timescale, where learning may occur, that
seems to be the most reluctant to be analyzed (Lotem, 2013). This
may stem from the fact that learning rules intrinsically encompass
constraints about the use of information and the expression of
actions (in the absence of unlimited powers of computation),
which curtails the direct application of standard optimality
approaches for studying dynamic behavior such as optimal control
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theory and dynamic programming. Indeed, the dynamics of even
the simplest learning rule, such as reinforcement learning by trial-
and-error, is hardly amenable to mathematical analysis without
simplifying assumptions and focusing only on asymptotics (Bush
and Mostelller, 1951; Norman, 1968; Rescorla and Wagner, 1972;
Börgers and Sarin, 1997; Stephens and Clements, 1998; but
see Izquierdo et al., 2007 for predictions in finite time).

Further, the difficulty of analyzing learning dynamics is
increased by two biological features that need to be taken
into account. First, varying environments need to be considered
because learning is favored by selection when the environment
faced by the individuals in a population is not absolutely fixed
across and/or within generations (Boyd and Richerson, 1985;
Rogers, 1988; Stephens, 1991; Feldman et al., 1996; Wakano
et al., 2004; Dunlap and Stephens, 2009). Second, frequency-
dependence needs to be considered because learning is likely to
occur in situations where there are social interactions between the
individuals in the population (Chalmeau, 1994; Hollis et al., 1995;
Villarreal and Domjan, 1998; Giraldeau and Caraco, 2000; Arbilly
et al., 2010, 2011b; Plotnik et al., 2011).

All these features taken together make the analysis of the evo-
lution of learning rules more challenging to analyze than standard
evolutionary game theory models focusing on actions or strate-
gies for constant environments (e.g., Axelrod and Hamilton, 1981;
Maynard Smith, 1982; Binmore and Samuelson, 1992; Leimar and
Hammerstein, 2001; McElreath and Boyd, 2007; André, 2010). Al-
though there has been some early studies on evolutionarily sta-
ble learning rules (Harley, 1981; Houston, 1983; Houston and
Sumida, 1987; Tracy and Seaman, 1995), this research field has
only recently been reignited by the use of agent-based simula-
tions (Großet al., 2008; Josephson, 2008; Hamblin and Giraldeau,
2009; Arbilly et al., 2010, 2011a,b; Katsnelson et al., 2011). It is
noteworthy that during the gap in time in the study of learning
in behavioral ecology, the fields of game theory and economics
have witnessed an explosion of theoretical studies of learning dy-
namics (e.g., Jordan, 1991; Erev and Roth, 1998; Fudenberg and
Levine, 1998; Camerer and Ho, 1999; Hopkins, 2002; Hofbauer and
Sandholm, 2002; Foster and Young, 2003; Young, 2004; Sandholm,
2011). This stems from an attempt to understand how humans
learn to play in games (e.g., Camerer, 2003) and to refine static
equilibrium concepts by introducing dynamics. Even if such mo-
tivations can be different from the biologists’ attempt to under-
stand the evolution of animal behavior, the underlying principles
of learning are similar since actions leading to high experienced
payoffs (or imagined payoffs) are reinforced over time.

Interestingly, mathematicians and game theorists have also de-
veloped tools to analytically approximate intertwined behavioral
dynamics, in particular stochastic approximation theory (Ljung,
1977; Benveniste et al., 1991; Fudenberg and Levine, 1998; Benaïm
and Hirsch, 1999a; Kushner and Yin, 2003; Young, 2004; Sand-
holm, 2011). Stochastic approximation theory allows one to ap-
proximate byway of differential equations discrete time stochastic
learning processes with decreasing (or very small) step-size, and
thereby understand qualitatively their dynamics and potentially
construct analytical models for the evolution of learning mecha-
nisms. This approach does not seem so far to have been applied in
evolutionary biology.

In this paper, we analyze by means of stochastic approxi-
mation theory an extension to fluctuating social environments
of the experience-weighted attraction learning mechanism (EWA
model, Camerer and Ho, 1999; Ho et al., 2007). This is a paramet-
ric model, where the parameters describe the psychological char-
acteristics of the learner (memory, ability to imagine payoffs of
unchosen actions, exploration/exploitation inclination), andwhich
encompasses as a special case various learning rules used in evolu-
tionary biology such as the linear operator (McNamara and Hous-
ton, 1987; Bernstein et al., 1988; Stephens and Clements, 1998),
relative payoff sum (Harley, 1981; Hamblin and Giraldeau, 2009)
and Bayesian learning (Rodriguez-Gironés and Vásquez, 1997;
Geisler and Diehl, 2002). We apply the EWA model to a situation
where individuals facemultiple periods of interactions during their
lifetime, andwhere each period consists of a game (like a prisoner’s
dilemma game, a Hawk–Dove game), whose type changes stochas-
tically according to an environmental process.

The paper is organized in three parts. First, we define themodel
and derive by way of stochastic approximation theory a set of
differential equations describing action play probabilities out of
which useful qualitative features about learning dynamics can be
read. Second, we use the model to compare analytical and simula-
tion results under some specific learning rules. Finally, we derive
an evolutionary model for patch foraging in a producer–scrounger
context, where both evolutionary and behavioral time scales are
considered.

2. Model

2.1. Population

We consider a haploid population of constant size N . Although
we are mainly interested in investigating learning dynamics, we
endow for biological concreteness the organisms with a simple
life cycle. This is as follows. (1) Each individual interacts socially
with others repeatedly and possibly for T time periods. (2) Each
individual produces a large number of offspring according to
its gains and losses incurred during social interactions. (3) All
individuals of the parental generation die and N individuals from
the offspring generation are sampled to form the new adult
generation.

2.2. Social decision problem in a fluctuating environment

The social interactions stage of the life cycle, stage (1), is the
main focus of this paper and it consists of the repeated play of
a game between the members of the population. At each time
step t = 1, 2, . . . , T , individuals play a game, whose outcome
depends on the state of the environment ω. We denote the set
of environmental states by Ω , which could consist of good and
bad weather, or any other environmental biotic or abiotic feature
affecting the focal organism. The dynamics of environmental states
{ωt}

T
t=1 is assumed to obey a homogeneous and aperiodic Markov

Chain, and we write µ(ω) for the probability of occurrence of
state ω under the stationary distribution of this Markov Chain
(e.g., Karlin and Taylor, 1975; Grimmett and Stirzaker, 2001).

For simplicity, we consider that the number of actions stays
constant across environmental states (only the payoffs vary), that
is, at every time step t , all individuals have a fixed behavioral
repertoire that consists of the set of actions A = {1, . . . ,m}.
The action taken by individual i at time t is a random variable
denoted by ai,t , and the action profile in the population at time
t is at = (a1,t , . . . , aN,t). This process generates a sequence of
action profiles {at}Tt=1. The payoff to individual i at time t when
the environment is in state ωt is denoted πi(ai,t , a−i,t , ωt), where
a−i,t = (a1,t , . . . , ai−1,t , ai+1,t , . . . , aN,t) is the action profile of
the remaining individuals in the population (all individuals except
i). Note that this setting covers the case of an individual decision
problem (e.g., a multi-armed bandit), where the payoff πi(ai,t , ωt)
of individual i is independent of the profile of actions a−i,t of the
other members of the population.

2.3. Learning process

We assume that individuals learn to choose their actions in
the game but are unable to detect the current state ωt of the
environment. Each individual is characterized by a genetically
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determined learning rule, which prescribes how its current actions
depend on its private history. The learning rules we consider
belong to the class of rules defined by the so-called experience-
weighted-attraction (EWA) learning model (Camerer and Ho,
1999; Camerer, 2003; Ho et al., 2007). The reason why we use
EWA is that it encapsulates many standard learning rules and
translates well the natural assumption that animals have internal
states, which are modified during the interactions with their
environment, and that internal states have a direct (but possibly
noisy) influence on action (Enquist and Ghirlanda, 2005). In EWA
learning, the internal states are attractions or ‘‘motivations’’ for
actions, and the mapping from internal states (motivations) to
action choice is realized via a probabilistic choice rule.

2.3.1. Dynamics of motivations
We first describe the dynamics ofmotivations. To each available

action a of its action setA, individual ihas an associatedmotivation
Mi,t(a) at time t that is updated according to

Mi,t+1(a) =
ni,t

ni,t+1
φi,tMi,t(a)

+
1

ni,t+1
{δi + (1 − δi)1(a, ai,t)}πi(a, a−i,t , ωt), (1)

where

ni,t+1 = 1 + ρini,t (2)

is individual i’s count of the number of steps of play. The initial
conditions of Eqs. (1) and (2) are the values of the state variables at
the first period of play (t = 1); that is,Mi,1(a) and ni,1.

The updating rule of motivations (Eq. (1)) is a weighted average
between the previous motivation to action a, Mi,t(a), and a
reinforcement to that action, {δi + (1−δi)1(a, ai,t)}πi(a, a−i,t , ωt),
which itself depends on the payoff πi(a, a−i,t , ωt) that would
obtain if action a was played at t . Eq. (1) is equivalent to Eq. 2.2
of Camerer and Ho (1999) with the only difference that the payoff
depends here on the current state of the environment, ωt , so that
individuals face a stochastic game.

The first term in Eq. (1) weights the previousmotivation by two
factors: φi,t , a positive dynamic memory parameter that indicates
howwell individual i remembers the previousmotivation; and the
experienceweight ni,t/ni,t+1, which is the ratio between the previ-
ous experience count to the new one. Eq. (2) shows that the expe-
rience count is updated according to another memory parameter,
ρi ∈ [0, 1]. If ρi = 1, the individual counts the number of interac-
tions objectively, i.e., ni,t = t (if ni,1 = 1), otherwise subjectively.

The reinforcement term to action a in Eq. (1) is weighted by
1/ni,t+1 and depends on δi, which varies between 0 and 1. This cap-
tures the ability of an individual to observe (or mentally simulate)
non-realized payoffs, while 1(a, ai,t) is the action indicator func-
tion of individual i, given by

1(a, ai,t) =


1, if ai,t = a,
0, otherwise. (3)

With these definitions, we can see that depending on the value of
δi, an individual can reinforce an unchosen action according to the
payoff that action would have yielded had it been taken. Indeed,
when individual i does not take action a at time t [1(a, ai,t) = 0],
the numerator of the second term is δiπi(a, a−i,t , ωt). If δi = 0,
this cancels out and the payoff associated to the unchosen action a
has no effect on the update of motivational states. But if δi = 1, the
numerator of the second term isπi(a, a−i,t , ωt), and themotivation
is updated according to the payoff individual iwould have obtained
by taking action a. All values of δi between 0 and 1 allow to
reinforce unchosen actions according to their potential payoff.
On the other hand, if action a is played at time t; namely,
1(a, ai,t) = 1, the numerator of the second term reduces to the re-
alized payoff πi(a, a−i,t , ωt), irrespective of the value of δi. Hence,
δi plays a role only for updating motivations of unchosen actions,
which occurs when individuals are belief-based or Bayesian learn-
ers as will be detailed below, after we have explained how the ac-
tions themselves are taken by an individual.

2.3.2. Action play probabilities
The translation of internal states (motivations) into action

choice can take many forms. But it is natural to assume that the
probability pi,t(a) = Pr{ai,t = a} that individual i takes action a at
time t is independent of other individuals and takes the ratio form

pi,t(a) =
f (Mi,t(a))

k∈A

f (Mi,t(k))
, (4)

where f (·) is a continuous and increasing function of its argument
(this ratio form could be justified by appealing to the choice axiom
of Luce, 1959, p. 6).

The choice rule (Eq. (4)) entails that the action that hasmaximal
motivation at time t is chosen with the greatest probability. This is
different from choosing deterministically the action that has the
highest motivation. Indeed, this type of choice function allows one
tomodel errors or exploration in the decision process of the animal
(an action with a low motivation has still a probability of being
chosen).

Errors can be formally implemented by imposing that

pi,t(a) = Pr{a = argmax
b∈A

[Mi,t(b) + ε(b)]} (5)

where (ε(b))b∈A are small perturbations that are independently
and identically distributed (i.i.d.) among choices. The idea is here
to first perturb motivations by adding a small random vector ε of
errors and then choose the action that has the biggest motivation.
The probability that action a has maximal perturbed motivation
defines the probability pi,t(a) with which action awill be chosen.

The maximizing assumption in Eq. (5) restricts the possibilities
for the form taken by f . In fact, the only function satisfying at
the same time both Eqs. (4)–(5) is f (M) = exp(λiM) for 0 <
λi < ∞depending on the distribution of perturbations (Sandholm,
2011, Chap. 6). Replacing this expression for f in Eq. (4), we obtain
that an organism chooses its actions according to the so-called logit
choice function

pi,t(a) =
exp[λiMi,t(a)]

k∈A

exp[λiMi,t(k)]
, (6)

which is in standard use across disciplines (Luce, 1959; Anderson
et al., 1992; McKelvey and Palfrey, 1995; Fudenberg and Levine,
1998; Sutton and Barto, 1998; Camerer and Ho, 1999; Achbany
et al., 2006; Ho et al., 2007; Arbilly et al., 2010, 2011b).

The parameter λi can be seen as individual i’s sensitivity
to motivations, errors in decision-making, or as a proneness to
explore actions that have not been expressed so far. Depending on
the value of λi, we can obtain almost deterministic action choice
or a uniform distribution over actions. If λi goes to zero, action a
is chosen with probability pi,t(a) → 1/m (where m is the number
of available actions). In this case, choice is random and individual
i is a pure explorer. If, on the other hand, λi becomes very large
(λi → ∞), then the action a∗

= argmaxb∈A [Mi,t(b)] with the
highest motivation is chosen almost deterministically, pi,t(a∗) →

1. In this case, individual i does not explore, it only exploits actions
that led to high payoff. For intermediate values of λi, individual i
trades off exploration and exploitation.
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Table 1
Special cases of EWA learning (Eqs. (1)–(4)). The first column gives the usual name of the learning rule found in the literature. The other columns give the
parameter values in the EWA model to obtain this rule and the explicit expression of motivation updating (Mi,t+1(a)). A cell with a dot (.) means that the
parameter in the corresponding column can take any value. A value of φi,t with the subscript t removed means that φi is a constant. The first part of the table
gives the rules already defined in the literature while the second part gives PRL, ERL, and IL, the three learning rules introduced in this paper. See Appendix D for
an explanation of how to obtain Tit-for-Tat from EWA, where Li(a) is the aspiration level by i for action a.

Learning rule φi,t ρi δi λi ni,1 Mi,t+1(a) pi,t (a)

Linear operator 0 < φi <

1
ρi = φi 0 . 1/(1 −

ρi)

φiMi,t (a) + (1 −

φi)1(a, ai,t )πi(a, a−i,t , ωt )

.

Relative payoff sum 0 < φi ≤

1
0 0 . 1 φiMi,t (a) + 1(a, ai,t )πi(a, a−i,t , ωt ) ∝ Mi,t (a)

Cournot adjustment 0 0 1 ∞ 1 πi(a, a−i,t , ωt ) ∝ exp[λiMi,t (a)]

Stochastic fictitious play (FP)
(equivalent to Bayesian learning
with Dirichlet distributed priors)

1 1 1 λi > 0 . t
t+1Mi,t (a) +

1
t+1πi(a, a−i,t , ωt ) ∝ exp[λiMi,t (a)]

Tit-for-Tat 0 0 1 ∞ 1 πi(a, a−i,t , ωt ) − Li(a) ∝ exp[λiMi,t (a)]

Pure reinforcement learning (PRL) 1 +
1
t 1 0 λi > 0 1 Mi,t (a) +

1
t+11(a, ai,t )πi(a, a−i,t , ωt ) ∝ exp[λiMi,t (a)]

Exploratory reinforcement learning
(ERL)

1 1 0 λi > 0 1 t
t+1Mi,t (a) +

1
t+11(a, ai,t )πi(a, a−i,t , ωt ) ∝ exp[λiMi,t (a)]

Payoff-informed learning (IL) 1 +
1
t 1 1 λi > 0 1 Mi,t (a) +

1
t+1πi(a, a−i,t , ωt ) ∝ exp[λiMi,t (a)]

Note: The expression ∝ exp[λiMi,t (a)] refers to the logit choice rule Eq. (6).
2.3.3. Learning rules in the EWA genotype space
In the EWAmodel, individuals differ by the value of the four pa-

rameters φi,t , ρi, δi, λi and the initial values of the state variables,
Mi,1(a) and ni,1. These can be thought of as the genotypic values
of individual i, and particular choice of these parameters provide
particular learning rules. In Table 1, we retrieve from the model
(Eq. (1)) some standard learning rules, which are special cases of
the genotype space. The Linear Operator rule (Bush andMostelller,
1951; Rescorla andWagner, 1972; McNamara and Houston, 1987;
Bernstein et al., 1988; Stephens and Clements, 1998; Hamblin
and Giraldeau, 2009), Relative Payoff Sum (Harley, 1981; Hous-
ton, 1983; Houston and Sumida, 1987; Tracy and Seaman, 1995),
Cournot Adjustment (Cournot, 1838), and Fictitious Play (Brown,
1951; Fudenberg and Levine, 1998; Hofbauer and Sandholm, 2002;
Hopkins, 2002) all can be expressed as special cases of EWA.

One of the strengths of EWA is that it encompasses at the
same time both reinforcement learning (like the linear operator or
relative payoff sum) and belief-based learning (like fictitious play)
despite the fact that these two types of learning rules are usually
thought of as cognitively very different (Erev and Roth, 1998;
Hopkins, 2002; van der Horst et al., 2010). Reinforcement learning
is the simplest translation of the idea that actions associated to high
rewards aremore often repeated,while belief-based learning relies
on updating beliefs (probability distributions) over the actions of
other players and/or the state of the environment, which occurs
in Bayesian learning. In the EWA model, belief-based learning
is made possible thanks to the ability to imagine outcomes of
unchosen actions (Emery and Clayton, 2004); this is captured by
the parameter δi, which is the key to differentiate reinforcement
from belief-based learning models.

Belief-based learning is captured in the EWA model since
motivations can represent the expected payoff of action over the
distribution of beliefs of the actions of other players (Camerer and
Ho, 1999), and the logit choice function further allows an individual
to best respond to the actions of others. It then turns out that the
Smooth Fictitious Play (FP) rule (Table 1) is equivalent to Bayesian
learning for initial priors over the actions of others (stage game
t = 1) that follow a Dirichlet distribution (Fudenberg and Levine,
1998, p. 48–49).

In EWA, the learning dynamics of an individual (Eqs. (1)–(4)) is
a complex discrete time stochastic process because action choice
is probabilistic and it depends on the (random) actions played by
other individuals in the population, and on the random variable
Fig. 1. Example of learning dynamics for two interacting individuals (1 and 2)
in a 2 × 2 Hawk–Dove game with π(1, 1) = B/2, π(1, 2) = 0, π(2, 1) = B,
π(2, 2) = B/2−C , where B = 5 and C = 3. The blue line represents the probability
p1,t to play Dove for individual 1 and the red line the probability p2,t to play Dove for
individual 2when the learning rule is characterized byφi,t = 1+1/t ,ρi = 1,λi = 1,
ni,1 = 1 for both players (rule called Pure Reinforcement Learning, PRL in Table 1).
Parameters values for player 1 are δ1 = 0, M1,1(Dove) = 1, and M1,1(Hawk) = 0
(hence p1,1 ≈ 0.73), while for player 2 they are δ2 = 0, M2,1(Dove) = 0, and
M2,1(Hawk) = 1 (hence p2,1 ≈ 0.27).

ωt . In Fig. 1, we show a simulation of a typical learning dynamics
of two interacting individuals who learn according to the EWA
model (Eqs. (1)–(4)) in a repeated Hawk–Dove game, and with
actions play probabilities following the logit choice rule (Eq. (6)).
Is it possible to approximate this dynamics in order to obtain a
qualitative understanding of the change of play probabilities?

2.4. Stochastic approximation

2.4.1. Differential equations for motivations
We now use stochastic approximation theory (Ljung, 1977;

Benveniste et al., 1991; Benaïm, 1999; Kushner and Yin, 2003) in
order to derive a system of differential equations (ODE) for the
motivations and choice probabilities, which produces qualitative
and quantitative results about learning dynamics.

The idea behind stochastic approximation is to write Eq. (1)
under the form of a difference equation with decreasing step-size,
which then allows one to compute the expected change of the
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dynamics over one time step. These expected dynamics give rise
to differential equations, which describe very closely the long-run
stochastic dynamics of the motivations (see Benaïm, 1999, for a
standard reference, and Hopkins, 2002, for an application of this
principle to learning). To that aim, we write Eq. (1) as
Mi,t+1(a) − Mi,t(a)

=
1

ni,t+1


−ϵi,tMi,t(a) + Ri(a, ai,t , a−i,t , ωt)


(7)

where
ϵi,t = 1 + ni,t(ρi − φi,t) (8)
is a decay rate and
Ri(a, ai,t , a−i,t , ωt)

=

δi + (1 − δi)1(a, ai,t)


πi(a, a−i,t , ωt) (9)

can be interpreted as the net reinforcement of the motivation of
action a.

In order to use stochastic approximation theory, we need that
the step-size of the process satisfies


∞

t=1(1/ni,t) = ∞ and
limt→∞(1/ni,t) = 0 (Benaïm, 1999, p. 11), where the first condi-
tion entails that the steps are large enough to eventually overcome
initial conditions, while the second condition entails that the steps
eventually become small enough so that the process converges.
This is ensured here by setting ρ = 1 in Eq. (2). We further assume
a constant value of ϵi from now on (this is the case for all rules in
Table 1, but a slowly varying ϵi,t is still amenable to an analysis via
stochastic approximation). Note however that the assumption that
ρ = 1 reduce to some extent the number of learning rules that one
can analyze in the EWA model, but the approximation can still be
useful for small constant step-sizes, for instance if one considers a
Linear Operator Rule (Table 1) with φi close to 1 (see Benaïm and
Hirsch, 1999b; Izquierdo et al., 2007, for results on processes with
constant step-sizes).

With these assumptions, we show in Appendix A (Eqs. (A.1)–
(A.12)) that the differential equation arising from taking the
expected motion of the stochastic dynamics in Eq. (7) is

Ṁi(a) = −ϵiMi(a) + R̄i(a), (10)
where

R̄i(a) = [pi(a) + δi(1 − pi(a))]


a−i∈AN−1

p−i(a−i)π̄i(a, a−i) (11)

and

π̄i(a, a−i) =


ω∈Ω

µ(ω)πi(a, a−i, ω). (12)

Here, a dot accent is used to denote a derivative, i.e., dx/dt = ẋ,
R̄i(a) is the expected reinforcement to the motivation of action
a of individual i over the distribution of action probabilities
in the population (where AN−1 is the set of action profiles of
individuals different than i), and π̄i(a, a−i) is the average payoff
over the distribution of environmental states. Because the action
play probabilities of the focal individual, pi(a), and the remaining
individuals in the population p−i(a−i) =


i≠j pj(aj) (Eq. (A.2)),

depend on the motivations, Eq. (10) is a differential of the form
Ṁi(a) = Fi(M), for all actions a and individual i in the population,
where M denotes the vector collecting the motivations of all
actions and individuals in the population. Hence, Eqs. (10)–(12)
define a bona fide autonomous system of differential equations.

Eq. (11) shows that the deterministic approximation rests on
the ‘‘average game’’ with payoffs given by π̄i(a, a−i), i.e., a game
where each payoff matrix entry (Eq. (12)) is a weighted average of
the corresponding entries of the stage games over the distribution
of environmental states µ(ω). Hence, if one wants to consider a
situation where the stage game fluctuates, one does not need to
specify a series of stage games, but only the average game resulting
from taking the weighted average of the payoffs of the original
stage games.
2.4.2. Differential equations for action play probabilities
Using the logit choice rule (Eq. (6)) and the dynamics of

motivations (Eq. (10)), we can derive a differential equation for the
choice probability for each action a of individual i

ṗi(a) = pi(a)


ϵi

k∈A

log

pi(k)
pi(a)


pi(k)

+ λi


R̄i(a) −


k∈A

R̄i(k)pi(k)


, (13)

(Appendix A, Eqs. (A.13)–(A.20)). Because R̄i(a) depends on
the action play probabilities, Eq. (13) also defines a bona fide
autonomous system of differential equations, but this time directly
for the dynamics of action. The first term in brackets in Eq. (13)
describes a perturbation to the choice probability. This represents
the exploration of action by individual i (it is an analogue of
mutation in evolutionary biology), and brings the dynamics back
into the interior of the state space if it gets too close to the
boundary. The second term in the brackets takes the same form
as the replicator equation (Hofbauer and Sigmund, 1998; Tuyls
et al., 2003); that is, if the expected reinforcement, R̄i(a), to action a
is higher than the average expected reinforcement,


k R̄i(k)pi(k),

then the probability of expressing action a increases.
Eq. (13) is the ‘‘final’’ point of the stochastic approximation ap-

plied to our model. We now have a system of differential equa-
tions [of dimension N × (m − 1)], which describes the ontogeny
of behavior of the individuals in the population. Standard results
from stochastic approximation theory guarantee that the origi-
nal stochastic dynamics (Eqs. (1)–(4)) asymptotically follows very
closely the deterministic path of the differential equation (13). For
instance, if the limit set of Eq. (13) consists of isolated equilibria,
the stochastic process (Eqs. (1)–(4)) will converge to one of these
equilibria almost surely (Benaïm, 1999; Borkar, 2008).

More generally, the differential equations for the action prob-
abilities are unlikely to depend only on the probabilities as is the
case in Eq. (13). For instance, when the choice rule is the so-called
power choice, the dynamics of actions will also depend on the dy-
namics of motivations (i.e., f (M) = Mλi in Eq. (4), which gives
rise to ṗi(a) = [λipi(a)/Mi(a)]


R̄i(a) −


k∈A R̄i(k)pi(k){pi(a)/

pi(k)}1/λi

, Eq. (A.22)). This is one of the reasons why the logit

choice rule is appealing; namely, it yields simplifications allowing
one to track only the dynamics of choice probabilities (Eq. (13)).

3. Applications

3.1. Pure reinforcement vs. payoff-informed learning

We now apply our main result (Eq. (13)) to a situation where
two individuals (N = 2) are interacting repeatedly and can express
only two actions during the stage game, action 1 and 2. In this
case, only three generic symmetric stage games are possible: A
game with a dominant strategy (e.g., a Prisoner’s Dilemma game,
PD), a game with two pure asymmetric Nash Equilibria (e.g., a
Hawk–Dove game, HD), and a game with two pure symmetric NE
(e.g., a Coordination Game, CG) so that the set of games can be
taken to be Ω = {PD, CG,HD} (Weibull, 1997, Chap. 1). We call
Rω the payoff obtained when the game is ω and both players play
action 1 (see Table 2 for the description of the payoffs for each game
ω), so that the average payoff obtained when both players play
action 1 is R = µ(PD)RPD + µ(CG)RCG + µ(HD)RHD. Likewise,
one can evaluate the payoffs S, T , and P of the average game,
when, respectively, player 1 plays action 1 andplayer 2 plays action
2, player 1 plays action 2 and player 2 plays action 1, and both
players play action 2 (Table 2).
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Table 2
Payoff matrices for the average Hawk–Dove game and the three associated sub-games. In each matrix, the rows correspond to the actions of player 1 (first row gives action
1, while second row gives action 2) and the columns correspond to the actions of player 2 (first column gives action 1, while second column gives action 2). Payoffs are
to row player (player 1). The matrix at the top shows the payoffs in the average Hawk–Dove Game (denoted Ḡ), and the three matrices below contain the payoffs of the
sub-games ω (PD, HD, and CG). In the Prisoner’s Dilemma (Left), we assume TPD > RPD > PPD > SPD and (TPD + SPD)/2 < RPD . In the Hawk–Dove (Middle), we have
THD > RHD, SHD > PHD, PHD > RHD . In the Coordination Game (Right), RCG > SCG, RCG = PCG, SCG = TCG .

Ḡ Dove Hawk

Dove R = B/2 S = 0
Hawk T = B P = B/2 − C

PD Cooperate Defect HD Dove Hawk CG Left Right

Cooperate RPD SPD Dove RHD SHD Left RCG SCG
Defect TPD PPD Hawk THD PHD Right TCG PCG
Weassume that individuals playing this stochastic gameuse the
learning rules characterized by

φi,t = 1 +
1
t

and ρi = 1 (14)

so that when δi = 0 we obtain a form of reinforcement learning,
which we call Pure Reinforcement Learning (PRL: see Table 1)
becausemotivations are updated only according to realized payoffs
and there is no discounting of the past. When δi = 1 we obtain
a rule we call Payoff-Informed Learning (IL: see Table 1) since in
that case an individual updates motivations according not only to
realized but also to imagined payoffs. The individual has here all
information about possible payoffs at each decision step t , hence
the name of the learning rule.

Substituting Eqs. (14) into Eq. (8) gives ϵi,t = 0 (since nt = t)
and thus ϵi = 0 in Eq. (13). Letting p1 = p1(1) be the probability
that individual 1 plays action 1 and p2 = p2(1) be the probability
that individual 2 plays action 1, we then obtain from Eq. (8), the
above assumptions, and Table 2, that the action play probabilities
satisfy the dynamics

ṗ1 = p1(1 − p1)λ1[{p2R + (1 − p2)S}{p1 + δ1(1 − p1)}
− {p2T + (1 − p2)P }{δ1p1 + (1 − p1)}], (15)

ṗ2 = p2(1 − p2)λ2[{p1R + (1 − p1)S}{p2 + δ2(1 − p2)}
− {p1T + (1 − p1)P }{δ2p2 + (1 − p2)}]. (16)

In order to compare the dynamics predicted by Eqs. (15)–(16) to
that obtained from iterating Eq. (1) with logit choice function Eq.
(6) (agent-based simulations), we assume that the average game
is a Hawk–Dove game (Maynard Smith and Price, 1973; Maynard
Smith, 1982). Hence, action 1 can be thought as ‘‘Dove’’ and action
2 as ‘‘Hawk’’. We now focus on two specific interactions in this
Hawk–Dove game: PRL vs. PRL, and PRL vs. IL, and in order to carry
out the numerical analysis, we also assume that the probability
µ(ω) that game ω obtains in any period obeys an uniform
distribution, which gives µ(PD) = µ(CG) = µ(HD) = 1/3.

3.1.1. PRL vs. PRL
When two PRL play against each other (Eqs. (15)–(16) with δi =

0 for both players) in the average Hawk–Dove game, we find that
the deterministic dynamic admits three locally stable equilibria
(Fig. 2A): the two pure asymmetric Nash equilibria, (Dove, Hawk)
and (Hawk, Dove), and the Pareto efficient outcome where both
individuals play Dove (Appendix B). Which outcome is reached by
the differential equations depends on the initial conditions, and
we characterized a region of the state space of initial conditions
that always lead to the (Dove, Dove) equilibrium (the gray region
in Fig. 2A).

In Fig. 3, we compare the deterministic model to the original
stochastic learning dynamics by graphing the distance between
the probability of playing Dove obtained from the equilibrium of
Eqs. (15)–(16) to that obtained from Eq. (6) under agent-based
simulations for various values of the duration of the game, T .
The correspondence between the two processes is affected by the
sensitivity to payoff, λ, and the initial difference in motivations to
a player between playing Dove and Hawk: ∆Mi,1 = Mi,1(1) −

Mi,1(2). If this difference is positive (∆Mi,1 > 0), player i is more
likely to play Dove initially since its probability to play Dove is
bigger than 0.5, while the player is more likely to play Hawk if the
difference is negative (∆Mi,1 < 0, which entails a probability to
play Dove lower than 0.5).

We observe that when λ is very small, the probability of playing
an action in the stochastic dynamics remains far from the equilib-
riumpredicted by the deterministic dynamics even if T is large. But
when λi becomes larger, the match between simulation and ap-
proximation becomes very good even for moderate T , unless the
difference in initial motivations between actions is close to zero
(∆Mi,1 = 0). In this case, the initial probability of choosing ac-
tions is about 1/2 for both players and one cannot predict which
equilibrium is reached in the deterministic dynamics because the
stochastic dynamics may go to any of the three locally stable equi-
libria (Fig. 2C). These features were generally observed when the
initial motivations of the players in the stochastic simulations con-
cordwith the predicted equilibrium; namely, if themotivations en-
tail initial play probabilities that are closer to the equilibrium than
random choice of actions (e.g., if playing Dove is an equilibrium,
then we say that a probability to play Dove that is bigger than 0.5
concords with the equilibrium).

When the initial motivations of an individual do not concord
with an equilibrium, it has to revert his initial preferences. This
may for instance be the case when the initial play probabilities of
both player favor the equilibrium (Hawk, Hawk), so thatMi,1(1) <
Mi,1(2), which entails a probability to play Dove lower than 0.5.
But (Hawk, Hawk) is an unstable equilibrium for the deterministic
dynamics, and we know that reinforcement learners cannot learn
a behavior that yields a strictly negative payoff as is the case when
the equilibrium (Hawk, Hawk) is played. This means that at least
one of the players will have to revert its initial preferences in order
to reach one of the three stable outcomes, (Dove, Dove), (Hawk,
Dove) or (Dove, Hawk).

If preferences need to be reversed and one further has a large
λ value, the initial play probability of Dove is close to 0, which is
very close to the lower-left corner of the state space in Fig. 2A.
Preference reversal may then take a very long time, and Fig. 4
shows that the time t∗ of such a reversal to occur is an increasing
function of the magnitude of ∆Mi,1. Consequently, while the value
of T did not have an important influence on the correspondence
between deterministic and stochastic dynamics when the initial
preferences were concordant with the predicted equilibrium and
λ is not too small (Fig. 3), T becomes very important when this is
not the case. In effect, when preferences need to be reversed under
small T and large ∆Mi,1 and λ, one can predict that the difference
in play probability observed under the deterministic and stochastic
dynamics will be important (as in the lightly shaded regions in
Fig. 3).
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Fig. 2. Solution orbits for the deterministic dynamics (panels A and B) and sample paths for the stochastic dynamics (panels C and D) for two learners in the average
Hawk–Dove game (B = 5 and C = 3), where the x and y axis represent the probabilities of playing Dove by player 1 and 2, respectively. In panels A and C players 1 and 2
both use the PRL rule, while in panels B and D player 1 uses PRL and player 2 uses IL. The gray shaded area in A represents the initial conditions for which all trajectories
go to the (1, 1) equilibrium (Dove, Dove). In panels A and B a white-filled dot denotes an unstable node (both associated eigenvalues are positive), a gray-filled dot is a
saddle, and a black dot is a locally stable equilibrium. For the stochastic trajectories (C, D), each color designates a given simulation run (with λi = 0.5 for both players and
T = 2000) describing a sample path ending in a different equilibrium predicted by the deterministic dynamics. We started all simulations runs from the center of the state
space (i.e., p1 = p2 = 1/2 and ∆M1,1 = ∆M2,1 = 0), and each point denotes an interactions round, t . We observe that points are far from each other at the beginning of a
simulation run but accumulate near a stable equilibrium at the end of a simulation run. This is because the stochastic shocks are large at the beginning (when the step-size
is big), but are smaller as the step-size decreases.
3.1.2. PRL vs. IL
When a PRL plays against an IL (Eqs. (15)–(16)) with δ1 = 0 for

PRL and δ2 = 1 for IL), we find that asymptotically both players
will learn one of the two pure asymmetric Nash equilibria, (Hawk,
Dove) and (Dove, Hawk), of the average game, depending on the
initial preferences of the players (Appendix B, Eq. (B.2)).

As was the case for PRL vs. PRL, the match between determin-
istic model and stochastic simulation for finite time depends on λi
and ∆Mi,1 (Fig. 3B, D, F). However, in this case the region around
∆Mi,1 = 0,where the analysis gives poor predictions of the real be-
havior seems larger. Otherwise, the same caveat that we observed
for PRL vs. PRL also apply to PRL vs. IL.

In summary, we observed that the deterministic dynamics (Eqs.
(15)–(16)) generally approximates qualitatively well the quasi-
equilibrium probabilities of playing action obtained under the
stochastic learning processes (Eqs. (1)–(4)), but there are extreme
cases which are not captured by the deterministic approximations.
These are the cases where λ and ∆Mi,1 are very small (actions
are random) or λ and ∆Mi,1 are too big (the dynamics get stuck
in suboptimal equilibria). In particular, when ∆Mi,1 is too big,
the time t for which the stochastic learning process gets close
to the deterministic approximation becomes very large (Fig. 4).
Now that we have a feeling about the conditions under which the
stochastic approximation can be applied, we turn to the analysis of
an evolutionary model of the competition between two different
learning rules.

3.2. Coevolution of learning and scrounging

Arbilly et al. (2010) explored using agent-based simulations
an evolutionary model of foraging where individuals learn to
find patches with high quality food. These producers can then be
followed by scroungers with which they compete over resources
found in the patches. In the same spirit as Arbilly et al. (2010),
we analyze here a model for the coevolution between learning
and scrounging. Our aim, however, is not to reproduce the results
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Fig. 3. Density plot of the average distance between the probability of playing Dove obtained from the equilibrium of the deterministic model (Eqs. (15)–(16)) and the
stochastic learning dynamics, as a function of λi and ∆Mi,1 . Each data pixel is the average over 5 simulation runs. Lightly shaded regions indicates a big euclidean distance
(∼

√
2) between simulations and analytic prediction, while dark regions indicates a small distance (∼0). We have λ1 = λ2 , but motivations are set to opposed values in both

individuals: ∆M1,1 = −∆M2,1 . Parameters of the average Hawk–Dove game are B = 5 and C = 3. (A) PRL vs. PRL and T = 100. (B) PRL vs. IL and T = 100. (C) PRL vs. PRL
and T = 500. (D) PRL vs. IL and T = 500. (E) PRL vs. PRL and T = 1000. (F) PRL vs. IL and T = 1000.
of this earlier model. Rather, it is to analyze a simplified model
that is amenable to an illustrative application of the stochastic
approximation method in a context where there is competition
between learning rules.

3.2.1. Biological setting
We consider a population of very large size (say N →

∞), whose members are facing the problem of foraging in an
environment consisting of two patch types, labeled 1 and 2. The
resource value to an individual foraging in a patch of type a is
written V (a) (a = 1, 2) and we assume that V (1) > V (2) ≥ 0.
In such an environment, learning is necessary, for example, if the
location of the optimal patch type changes from one generation to
the next.
At each decision step t (1 ≤ t < T ) during its lifetime, a learner
has to make a choice on whether to forage on patch type 1 or 2 so
that the two available actions to a learner are feeding on patch 1 or
2 and its action set can bewritten {1, 2}. The payoff from feeding on
a given patch depends on the number of other individuals on that
patch. We assume that there can be no more than two individuals
on a patch, so the payoff, πi(ai,t , a−i,t) to individual i taking action
ai,t ∈ {1, 2} at time t is either V (ai,t) or V (ai,t)/2, where a−i,t is the
random indicator variable representing the presence of another
individual on the patch of individual i at time t . If individual i is
alone on the patch (which we write a−i,t = 0), it gets the whole
resource: πi(ai,t , 0) = V (ai,t). If there is another individual on the
patch (which we write a−i,t = 1), individual i shares its value with
the scrounger so its payoff is πi(ai,t , 1) = V (ai,t)/2.
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Fig. 4. Preference reversal for two PRL playing the average Hawk–Dove game with same initial preferences for Hawk (∆Mi,1 < 0) and a high sensitivity to motivations
(λi = 1000). In panel A, we graph the first time t∗ that a preference reversal occurs (i.e., first time that ∆Mi,t∗ > 0 for at least one of the players) as a function of the
magnitude of∆Mi,1 . Each point in A is the average over 100 simulation runs. In panel B, we graph themotivations for individual 1 to play Hawk (brown line) and Dove (green
line) when ∆M1,1 = −3 (M1,1(Dove) = 0,M1,1(Hawk) = 3). The individual has a larger but decreasing motivation for playing Hawk for approximately 2000 rounds, where
the motivations reverse to favor Dove. In panel C, we have the corresponding motivations for individual 2 with same parameter values, and this shows that the motivation
for Hawk first decreases (same trend as individual 1), but then increases again when its opponent has reversed his preferences. In panel D, we have the Dove action play
probabilities for individual 1 (blue line) and 2 (red line).
We assume that there are three types of individuals in this pop-
ulation: Scroungers (S), Fictitious Players (FP), and Exploratory Re-
inforcement Learners (ERL, see Table 1), where both learners (ERL
and FP) are exploratory (ϵ = 1 in Eq. (13)). The life-cycle of these
individuals is as described above (Section 2.1). Note that PRL and
IL in the Hawk–Dove game model were characterized by ϵ = 0
(no explicit exploration). Here, FP and ERL can be thought respec-
tively as an extension of PRL and IL to the case of exploratory learn-
ing, because the only difference between the rules of the previous
Hawk–Dovemodel (IL and PRL) and the ones in this foragingmodel
(FP and ERL) is the value of ϵ, which determines the presence of
explicit exploration (see Table 1 for a comparison of these rules).
Scroungers do not learn but only follow learners (ERL and FP) and
we now describe the learning dynamics of these two types. For
simplicity, we do not consider innates (e.g., Feldman et al., 1996;
Wakano et al., 2004) as these are likely to be replaced by learners
if the latter visit patch type 1 with a probability larger than that
obtained by encountering patches at random, and learning is not
too costly.

3.2.2. Fictitious play
Substituting ϵ = 1 into Eq. (13), and letting pF = pF(1) be the

probability that an individual of type FP visits patch 1, we obtain
that the learning dynamics of FP obeys the differential equation

ṗF = pF


log


1 − pF
pF


(1 − pF) + λF


R̄F(1)

−

R̄F(1)pF + R̄F(2)(1 − pF)

 
. (17)

For this model of patch choice, the expected reinforcement to
an FP (Eq. (11)) when foraging on patch type a is
R̄F(a) = (1 − s)V (a) + s
V (a)
2

=


1 −

s
2


V (a), a = 1, 2, (18)

where s denotes the frequency of scroungers in the population.
Setting ṗF = 0 one obtains the probability of visiting patch 1 at
steady state of learning as

p̂F =
1

1 + exp


λF[2−s][V (2)−V (1)]
2

 . (19)

Fig. 5A shows that the agreement between predicted equilib-
rium and that obtained in agent-based simulations is outstanding
even if T is not too large, which stems from the fact that the dy-
namics has a single equilibrium.

3.2.3. Exploratory reinforcement learning
For exploratory reinforcement learning, substituting ϵ = 1 into

Eq. (13), we obtain that the probability that an ERL visits patch 1
obeys

ṗE = pE


log


1 − pE
pE


(1 − pE) + λE


R̄E(1)

−

R̄E(1)pE + R̄E(2)(1 − pE)

 
, (20)

where the expected reinforcements (Eq. (11)) of going on patch
types 1 and 2 are, respectively, given by

R̄E(1) = pE

1 −

s
2


V (1),

R̄E(2) = (1 − pE)

1 −

s
2


V (2). (21)
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Fig. 5. Panel A: equilibrium probability p̂F of visiting patch 1 for a FP (Eq. (19)) graphed as a function of the value of patch 1, V (1), for different values of λi . We fixed the
value of patch 2 at V (2) = 5, the frequency of scroungers to s = (3 −

√
5)/2 and λi = 0.03 for the blue line, λi = 0.15 for the red line, and λi = 0.3 for the green

line. Dots of corresponding colors were obtained from simulations of the original stochastic learning dynamics after T = 1000 decision steps in the environment. Panel
B: equilibrium probability p̂E of visiting patch 1 for a ERL (obtained by solving for the equilibrium of Eqs. (20)–(21) graphed for the same parameter values as in panel A.
Triangles of corresponding colors give the average over 1000 runs of stochastic simulations with different initial conditions (pE,1) ranging from 0 to 1.
The equilibria of Eq. (20) cannot be solved analytically (this is
a transcendental equation in pE). We thus relied on a numerical
analysis to obtain its fixed points (ṗE = 0) and focused on
the variation of λE values by performing a bifurcation analysis
(with Newton’s method using Mathematica, Wolfram Research,
Inc., 2011). Fig. 6 shows that the phase line passes through three
different regimes as λE increases. These regimes are separated by
two critical values of λE, which we will call λ

crit1
E and λ

crit2
E , and

provide the following cases.
(I) When 0 < λE < λ

crit1
E , the learning dynamics admit one stable

interior equilibrium, which is close to 0.5 when λE is close to
0 and increases as λE increases, until λE reaches λ

crit1
E .

(II) When λ
crit1
E < λE < λ

crit2
E , there are three interior equilibria.

The ‘‘completely interior’’ equilibrium is unstable and the two
other interior equilibria are stable. As λE increases, the two
stable equilibria get closer to 0 and 1 and finally collapsewhen
λE approaches λ

crit2
E .

(III) When λE > λ
crit2
E , there is only one interior equilibrium that

is unstable. As λE gets bigger, this equilibrium approaches
V (2)/[V (1) + V (2)]. In this case, the learner visits only patch
1when the initial condition is above this value, and visits only
patch 0 when the initial condition is below that value.

We also ran simulations of the original stochastic learning
dynamics to test the robustness of this numerical analysis and
observed that simulations agree very well on average with our
numerical analysis based on the stochastic approximation results
(Fig. 5B).

In the two cases where there are two stable equilibria (cases
II and III), which equilibrium is reached depends on the initial
conditions of the system (the initial motivations). We postulate
that the initial preference for the patch types is drawn at random
from a uniform distribution (Appendix D, Eq. (C.3)), which allows
us to obtain an expected equilibrium probability that an ERL visits
patch 1. When λE becomes large, this expectation is the average
over visiting only patch 1 or 2, which gives

p̂E =
V (1)

V (1) + V (2)
(22)

(Appendix D). This gives the matching law (Herrnstein, 1970), if
one rescales V (1) and V (2) between 0 and 1 so that they describe
the probability to find food at all in the respective patches rather
than measuring the ‘‘value’’ of the patches.
3.2.4. Payoff functions
In order to derive the fecundity (or payoff) functions of the

three types (ERL, FP, and S), we make the assumption that learners
have reached the equilibrium behavior described in the previous
section (p̂F given Eq. (19) for FP and p̂E given by the expectation
over the various equilibria like in Eq. (22). We further denote by q
the frequency of FP, so that 1 − q − s gives the frequency of ERL.
With probability p̂i (i ∈ {E, F}), a learner goes to patch 1, while
with probability 1− p̂i, it goes to patch 2. The fecundity (or payoff)
of the two learners is then given by

bF = α + p̂F


2 − s
2


V (1) + (1 − p̂F)


2 − s
2


V (2) − k,

bE = α + p̂E


2 − s
2


V (1) + (1 − p̂E)


2 − s
2


V (2) − k, (23)

where k is the cost of individual learning and we assumed that all
individuals have a baseline reproductive output of α.

Because we assumed that only a single scrounger can follow
a producer, the expected frequency of interactions of a scrounger
with a producer is proportional to (1− s)/s, and the fecundity of a
scrounger is assumed to be given by

bS = α +
1 − s
s


q

1 − s


p̂F

V (1)
2

+ (1 − p̂F)
V (2)
2


+

1 − q − s
1 − s


p̂E

V (1)
2

+ (1 − p̂E)
V (2)
2


. (24)

This entails that scroungers have no preference for FP or ERL. They
follow an FPwith a probability q/(1−s) and follow an ERLwith the
complementary probability (1− q− s)/(1− s). When a scrounger
follows a learner of type i on patch a, the scrounger gets half of
the value of the patch, V (a)/2. This learner goes to patch 1 with
a probability p̂i, or goes to patch 2 with probability 1 − p̂i, hence
the expected payoff to a scrounger conditional on the event that it
follows a learner of type i is p̂i[V (1)/2] + [1 − p̂i][V (2)/2].

3.2.5. ESS analysis
With the above assumptions, the change in frequencies of the

types after one generation is given by
∆q = q


bF − b̄


/b̄

∆s = s

bS − b̄


/b̄, (25)
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Fig. 6. Bifurcation diagram for the differential equation (20) that describes the learning behavior of ERL in the producer–scrounger model as a function of λE . The thin
curves describe the equilibrium values of p̂E and the thick vertical lines are phase lines at the corresponding values of λE . Dots on the phase lines denote interior equilibria.
Our numerical exploration suggests that there are three possible phase lines depending on the value of λE (indicated by I, II, and III). Parameter values: s = (3 −

√
5)/2,

V (1) = 5.3, V (2) = 5.
Fig. 7. Solution orbits of the evolutionary dynamics (Eq. (25)) in the pro-
ducer–scrounger model on the 3-strategy simplex as a function of λE and λF . In the
light shaded region, ERL is themost performant (p̂E > p̂F), while in the dark shaded
region, FP is the most performant (p̂F > p̂E). The simplex drawn in the light region
is plotted for p̂E > p̂F and hence verifies that the mix between ERL and scroungers
is the unique ESS. The simplex in the dark region corresponds to the case where the
unique ESS is the mix between FP and scroungers. At the corner labeled FP on the
simplices, we have (q = 1, s = 0), at the corner ERL we have (q = 0, s = 0) and at
the corner S we have (q = 0, s = 1). A white-filled dot denotes an unstable node,
a gray-filled dot is a saddle, and the black dot corresponds to the unique ESS. These
simplices were produced using the Baryplot package (McElreath, 2010) for R (R De-
velopment Core Team, 2011). Parameter values for the shading: s =


3 −

√
5


/2,
V (1) = 5.3, V (2) = 5.

where b̄ = qbF+sbS+(1−q−s)bE is themean reproductive output
in the population. The evolutionary dynamics (Eq. (25) with Eqs.
(23)–(24)) displays five stationary states, which we write under
the form (q∗, s∗, 1 − q∗

− s∗). There are the three trivial equilibria
[(1, 0, 0),(0, 1, 0), (0, 0, 1)], one equilibrium with a coexistence
between FP and scroungers, ( 1

2 (
√
5 − 1), 1

2 (3 −
√
5), 0), and

one with a coexistence between ERL and scroungers at the same
frequency as in the previous case: (0, 1

2 (3 −
√
5), 1

2 (
√
5 − 1)).

Because the payoff to scroungers exceeds that of producers when
they are in low frequency s → 0 (for V (1) > 0 and/or V (2) > 0),
the two equilibria where there is a mix between scroungers and
producers are stable in a reduced 2-strategy dynamics (on the faces
of the simplex). Hence, the three trivial equilibria are unstable. The
question then is which one of the two other equilibria obtains.
Because the fecundity of each type of producer does not depend on
the other type and in the sameway on the frequency of scroungers
(Eq. (23)), the mix between scroungers and FP is invaded by ERL if
they producemore resources. Namely, if the latter visit more often
the optimal patch, which obtains if

p̂E > p̂F. (26)

This invasion condition is not necessarily satisfied when λE >
λF, and in Fig. 7 we display the regions of values of λF and λE where
it is satisfied. These regions seem to alternate in a non-trivial way.
Interestingly, the region where ERL outcompetes FP looks fairly
large for our parameter values. When λE becomes very large, it is
possible to have an exact invasion condition by substituting Eqs.
(19) and (22) into Eq. (27), which implies that ERL invades the
stable mix of FP and S if and only if

λF <
2 log


V (1)
V (2)


[V (1) − V (2)]


1 +

√
5


/2
. (27)

Summing up the above analysis, there is a globally stable state
for the 3-strategy replicator dynamics in this producer–scrounger
model that is the mix between scroungers and the most
performant producer. In this unique evolutionarily stable state,
producers are in frequency

√
5 − 1


/2. Which of the producer

type will be maintained in the population (FP or ERL) critically
depends on the exploration rate (λF and λE). It is noteworthy that
it is not the learner with the highest value of λi that will invade.
The main reason for this is that increasing λE for ERL does not
always leads to a higher probability of visiting patch 1. When λE
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is relatively small, this is actually true (in regime I of the learning
dynamics of ERL, Fig. 6) but when λE grows (regimes II and III),
ERL suddenly becomes prone to absorption in a state where it
visits patch 2 with a probability greater than 0.5 (p̂E < 0.5). This
makes ERL less performant than FP for high values of λi (the upper-
right region in Fig. 7). Further, when λi is very small (the lower-
left region in Fig. 7), ERL seems to be less sensitive than FP to an
increase in λi.

4. Discussion

In this paper, we used stochastic approximation theory (Ljung,
1977; Benveniste et al., 1991; Fudenberg and Levine, 1998; Be-
naïm, 1999; Kushner and Yin, 2003; Sandholm, 2011) in order to
analyze the learning of actions over the course of an individual’s
lifespan in a situation of repeated social interactions with envi-
ronmentally induced fluctuating game payoffs. This setting may
represent different ecological scenarios and population structures,
where interactions can be represented as an iterated N-person
game or a multi-armed bandit. The learning dynamics was as-
sumed to follow the experience-weighted attraction (EWA) learn-
ing mechanism (Camerer and Ho, 1999; Ho et al., 2007). This is a
motivational-based learning process, which encompasses as spe-
cial cases various learning rules used in biology such as the lin-
ear operator (McNamara andHouston, 1987; Bernstein et al., 1988;
Stephens and Clements, 1998), relative payoff sum (Harley, 1981;
Hamblin and Giraldeau, 2009) and Bayesian learning (Rodriguez-
Gironés and Vásquez, 1997; Geisler and Diehl, 2002).

When a behavioral process has a decreasing step-size (or a very
small constant step-size), stochastic approximation theory shows
that the behavioral dynamics is asymptotically driven by the ex-
pected motion of the original stochastic recursions. Stochastic ap-
proximation is thus appealing because once the expected motion
of the stochastic learning process is derived, one is dealing with
deterministic differential equations that are easier to analyze. Fur-
ther, the differential equations governing action play probabilities
under the EWAmodel that we have obtained (Eq. (13)) have a use-
ful interpretation. They show that learning is driven by a balance
between two forces. First, the exploration of actions that tends to
bring the dynamics out of pure states, which is analogous to mu-
tation in evolutionary biology. Second, the exploitation of actions
leading to higher expected reinforcement, which is analogous to
selection in evolutionary biology. This second part actually takes
the same qualitative form as the replicator equation (Eq. (13)),
since actions leading to an expected reinforcement higher than the
average expected reinforcement will have a tendency to be played
with increased probability. Although it may be felt in retrospect
that this result is intuitive, it is not directly apparent in the original
stochastic recursions of the behavioral rule, which encompasses
parameters tuning the levels of cognition of individuals (Eq. (1)).

Our model is not the first where analogues of replicator
dynamics appear out of an explicit learning scheme (e.g., Börgers
and Sarin, 1997; Hopkins, 2002; Tuyls et al., 2003; Hofbauer
and Sigmund, 2003). But, apart from Hopkins (2002), we are not
aware of results that link the replicator dynamics to reinforcement
learning and belief-based learning at the same time, which
was extended here to take fluctuating social environments into
account. Although we considered only individual learning without
environmental detection in our formalization (i.e., individuals
learn the average game), the reinforcement of motivations could
take social learning into account (e.g., Cavalli-Sforza and Feldman,
1983; Schlag, 1998; Sandholm, 2011), and/or individuals may
detect changes in the environment so that the motivations
themselves may depend on environmental states (e.g., evaluate
the dynamics of motivations Mt(a, ω) for action-state pairs). The
consequences of incorporating these features for action ontogeny
may be useful to analyze in future research.

We applied our results to analyze the dynamics of action play
probabilities in a situation of repeated pairwise interactions in a
2 × 2 fluctuating game with average Hawk–Dove payoffs, where
we investigated interactions between different learning rules, a
situation that is very rarely addressed analytically (but see Leslie
and Collins, 2005; Fudenberg and Takahashi, 2011). Comparison
with stochastic simulations of the original learning dynamics
indicate that the deterministic dynamics generally approximates
qualitativelywell the quasi-equilibriumof action play probabilities
obtained under the original stochastic process. Even if the theory
can only prove that the stochastic approximation of processes
with decreasing step-sizes ‘‘works’’ when time becomes very large
(the differential equation are guaranteed to track the solutions
of the stochastic process only asymptotically, Benaïm, 1999), our
simulations suggest that stochastic approximation can, under good
circumstances, give fair predictions for finite-time behavior (in our
case, for T = 100, 500, and 1000), and also for the ontogeny
of behavior (Fig. 8). This may be useful in the context of animal
behavior, when lifespan is short.

We also observed one limitation associated with using stochas-
tic approximation in our examples. Namely, there are situations
that are not captured by the deterministic approximation. These
involve the cases where the sensitivity to payoff (λ) and the dif-
ference between initial motivations (∆Mi,1) are very small so that
actions are random, and the cases where λ and ∆Mi,1 are very big
so that the dynamics get stuck in suboptimal equilibria. In particu-
lar, when ∆Mi,1 is very large, individuals may have to reverse their
initial preferences and thismakes very large the time forwhich the
stochastic learning process gets close to its asymptotic approxima-
tion.

Finally, we applied our results to analyze the evolutionary com-
petition between learners and scroungers in a producer–scrounger
game, where we considered that learners are producers (who
search and find good patches of food) and scroungers follow the
producers. Three types were present in the population: individ-
uals who learn according to Exploratory Reinforcement Learn-
ing, individuals who learn according to Stochastic Fictitious Play
(Table 1), and scroungers. This evolutionary model leads, at the
ESS, to the co-existence of scrounger with the most performant of
the two learning rules. In particular, we showed that the explo-
ration rate (λi) influences which is the most performant producer,
but the effect of λi is non-linear. This shows that different learning
rules are very differently affected by varying the exploration rate.
The exploration rate and the choice rule (Eq. (4)) thus makes part
of the definition of a learning rule, and λi may interact in a non-
intuitive way with the other parameter of the process that affect
motivation updating.

While in this paper we analyzed certain learning rules with
decreasing step-size, it remains an open empirical question to
document how common this type of learning rules are in nature.
It seems that previous work in animal psychology and behavioral
ecology focused more on rules with constant step-sizes (e.g., the
linear operator, Bush and Mostelller, 1951; Rescorla and Wagner,
1972; Hamblin and Giraldeau, 2009; Arbilly et al., 2010) because
the step-size has here a clear interpretation in terms of a discount
factor (or learning rate) and takes into account known phenomena
such as habituation or forgetting. But it will be relevant to
determine how well rules with decreasing step-size fit animal
behavior. In particular, we suspect that such behavioral rules could
describe accurately learning processes where early experience is
critical to shape general behavior andwhere further information is
used only to fine tune actions (e.g., developmental processes) and
where preference reversal becomes unlikely.

In summary, although we illustrated some shortcoming of
applying stochastic approximation, we showed that it can be a
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Fig. 8. Comparison between the deterministic (thin, plain lines) and the stochastic (thick, dashed lines) time dynamics of playing Dove for a PRL meeting an IL, and for
different values of λi and ∆Mi,1 . The blue line is for the PRL while the red line is for the IL. We always set opposed initial motivations to the players (∆M1,1 = −∆M2,1) and
λ1 = λ2 , while the parameters of the game are B = 5 and C = 3. (A) ∆M1,1 = 1 and λi = 1. (B) ∆M1,1 = 10−1 and λi = 1. (C) ∆M1,1 = 1 and λi = 10−1 . (D) ∆M1,1 = 10−1

and λi = 10. We simulated the process for T = 500 interactions and the time on the x-axis is measured on the timescale of the interpolated stochastic process (the τn
in Benaïm, 1999), which is used to plot the numerical solution of the differential equations.
useful approach to learn about learning dynamics and to avoid ‘‘the
behavioral gambit’’ (Fawcett et al., 2013; Lotem, 2013). But even
if action play probabilities can be approximated by differential
equations, there are many aspects of the concomitant dynamics
thatwedid not analyze here, and that are likely to be relevant in the
context of animal learning. This opens paths to future work, which
could for instance analyze rules with constant step-size, produce
finite-time predictions for play probabilities, evaluate the effect of
learning speed on payoff under different patterns of environmental
fluctuations, or investigate state-dependent motivations. Studying
these aspects may be relevant to better understand learning
dynamics and behavioral ontogeny.
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Appendix A. Stochastic approximation

A.1. Expected motion of motivations

Here, we derive Eq. (10) of the main text from Eq. (7). To that
end, we callMi,t = (Mi,t(1), . . . ,Mi,t(m)) the vector collecting the
motivations of individual i at time t and Mt = (M1,t , . . . ,MN,t)
the vector ofmotivations in thewhole population at time t .We also
denote byM−i,t themotivations of all individuals except individual
i at time t . With this, the expectation of Ri(a, ai,t , a−i,t , ωt) Eq. (9)
given current motivational state can be written as

R̄i,t(a,Mt) = E

Ri(a, ai,t , a−i,t , ωt) | Mt


=


h∈A


a−i∈AN−1


ω∈Ω

Ri(a, h, a−i, ω)

× pi,t(h | Mi,t)p−i,t(a−i | M−i,t)µ(ω), (A.1)

where pi,t(h | Mi,t) is the probability that individual i takes
action h given its current motivations Mi,t , p−i,t(a−i | M−i,t) is
the joint probability that the opponents of individual i play action
profile a−i when they have motivational state M−i,t , and µ(ω)
denotes the probability of stateω under the stationary distribution
of environmental states (we will reason in terms of the long run
behavior of the learning dynamics in the following).

For simplicity of presentation, we will use the notation of Eq.
(4), i.e., pi,t(k | Mi,t) = pi,t(k) and p−i,t(a−i | M−i,t) =

p−i,t(a−i). Actions are taken independently by each individual in
the population according to Eq. (4), whereby

p−i,t(a−i) =


i≠j

pj,t(aj), (A.2)

where aj denotes the j-th element of the vector a−i.
With the above definitions, we can write Eq. (7) as

Mi,t+1(a) − Mi,t(a)

=
1

nt+1


−ϵiMi,t(a) + R̄i,t(a,Mt) + Ui,t+1(a, at , ωt)


, (A.3)

where the term Ui,t+1(a, at , ωt) = Ri(a, at , ωt) − R̄i,t(a,Mt) is
called the ‘‘noise’’ term in stochastic approximation algorithm. The
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expression Ui,t+1(a, at , ωt) is subscribed by t + 1 (and not t)
in the stochastic approximation literature because it determines
the value of the state variable at time t + 1. It follows from the
definition of the noise that {Ui,t(ai, at , ωt)}t≥1 is a sequence of
martingale differences adapted to the filtration generated by the
random variables {Mt}t≥1. That is, E[Ui,t+1(a, at , ωt)|Mt ] = 0.
Since the payoffs are bounded, we also have E[Ui,t(a, at , ωt)

2
] <

∞. We further assume that the choice probability (Eq. (4)) is
continuous in the motivations of the players, such that the
expected reinforcement R̄i,t(a,Mt) is Lipschitz continuous in the
motivations. With this, −ϵiMi,t(a) + R̄i,t(a,Mt) is a well-behaved
vector field and standard results from stochastic approximation
theory (Benaïm, 1999; Benaïm and El Karoui, 2005, p. 173) allow
us to approximate the original stochastic process (Eq. (A.3)) with
the deterministic differential equation

Ṁi(a) = −ϵiMi(a) + R̄i(a,M). (A.4)

The solutions of the original stochastic recursion (Eq. (1))
asymptotically track solutions of this differential equation. In par-
ticular, it has been established that the stochastic process almost
surely converges to the internally chain recurrent set of the differ-
ential equation (A.4) (Benaïm, 1999, Prop. 4.1 and Th. 5.7). The sim-
plest form of a chain recurrent set is the set of equilibrium points
of the dynamics (the particular applications of our model that we
study do not go beyond these cases). Note that in continuous time
the equations are deterministic and we remove the subscript t to
Mt for ease of presentation.

A.2. Differential equation in terms of mean payoff

Here, we show that it is possible to simplify the expression
of the expected reinforcement R̄i,t(a,Mt) for our explicit learning
model (Eq. (1)). First, recall from Eq. (9) that for action a of player
i, the realized reinforcement has the form

Ri(a, ai,t , a−i,t , ωt) =

δi + (1 − δi)1(a, ai,t)


πi(a, a−i,t , ωt). (A.5)

We see that

Ri(a, ai,t , a−i,t , ωt) =


πi(a, a−i,t , ωt) if ai,t = a,
δiπi(a, a−i,t , ωt) if ai,t ≠ a. (A.6)

In order to find an expression for the expected reinforcement
R̄i,t(a,Mt), it is useful to rewrite Eq. (A.5) as

Ri(a, ai,t , a−i,t , ωt) =

δi + (1 − δi)1(a, ai,t)


×


a−i∈AN−1

πi(a, a−i, ωt)1(a−i, a−i,t), (A.7)

since 1(a−i, a−i,t) = 1 if a−i = a−i,t , 0 otherwise. Now, given
that the event a = (a1, . . . , ai−1, a, ai+1, . . . , aN) occurs with
probability pi,t(a)p−i,t(a−i) at time t , we deduce that the expected
reinforcement of the motivation of action a is

R̄i,t(a,Mt) =


ω∈Ω

µ(ω)

pi,t(a)


a−i∈AN−1

p−i,t(a−i)πi(a, a−i, ω)

+ δi(1 − pi,t(a))

 
a−i∈AN−1

p−i,t(a−i)πi(a, a−i, ω)


 . (A.8)

Factoring out, we have

R̄i,t(a,Mt) =


ω∈Ω

µ(ω)


{pi,t(a) + δi(1 − pi,t(a))}

×


a−i∈AN−1

p−i,t(a−i)πi(a, a−i, ω)


. (A.9)
Define the average payoff

π̄i(a, a−i) =


ω∈Ω

µ(ω)πi(a, a−i, ω). (A.10)

Taking expectation, then produces

R̄i,t(a,Mt) = [pi,t(a) + δi(1 − pi,t(a))]

×


a−i∈AN−1

p−i,t(a−i)π̄i(a, a−i), (A.11)

and substituting into Eq. (A.3) shows that we can write the
differential equation for the motivations (Eq. (A.4)) as

Ṁi(a) = −ϵiMi(a) + [pi(a) + δi(1 − pi(a))]

×


a−i∈AN−1

p−i(a−i)π̄i(a, a−i). (A.12)

A.3. Differential equation for the choice probabilities

A.3.1. Logit choice
Here,wederive theODE for the choice probabilities (Eq. (13)) by

combining the ODE for the motivations (Eq. (10)) with the choice
rule (Eq. (4)), under the assumption that the choice rule is the logit
choice function (Eq. (6)).

Differentiating the left and right member of Eq. (4) with respect
to time t , we have by the chain rule

ṗi(a) =


k∈A

dpi(a)
dMi(k)

Ṁi(k), (A.13)

and substituting Eq. (4) gives

ṗi(a) =
df (Mi(a))
dMi(a)

Ṁi(a)
k∈A

f (Mi(k))

− pi(a)

k∈A

df (Mi(k))
dMi(k)

Ṁi(k)
h∈A

f (Mi(h))
. (A.14)

Using f (M) = exp (λiM) in the choice function (Eq. (4)) gives
Eq. (6), which implies

df (Mi(a))
dMi(a)

×
1

k∈A

f (Mi(k))
= λipi(a), (A.15)

whereby Eq. (A.14) can be written as

ṗi(a) = λipi(a)


Ṁi(a) −


k∈A

Ṁi(k)pi(k)


. (A.16)

Using the explicit expression for the differential equation of the
motivations (Eq. (A.4)), this is

1
λipi(a)

ṗi(a) = ϵi


k∈A

{Mi(k) − Mi(a)}pi(k)


+ R̄i(a) −


k∈A

R̄i(k)pi(k). (A.17)

But from the choice probabilities (Eq. (6)) we have the identity

pi(k)
pi(a)

=
exp [λiMi(k)]
exp [λiMi(a)]

, (A.18)

which gives

log

pi(k)
pi(a)


= λi (Mi(k) − Mi(a)) (A.19)
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and on substitution into Eq. (A.17) produces

ṗi(a) = pi(a)


ϵi

k∈A

log

pi(k)
pi(a)


pi(k)

+ λi


R̄i(a) −


k∈A

R̄i(k)pi(k)


. (A.20)

A.3.2. Power choice
Here, we perform the same derivation as in the last section

but assume that f (M) = Mλi in Eq. (4). In this case,
[df (Mi(a))/dMi(a)] /


k∈A f (Mi(k)) =


λiMi(a)λi−1


/


k∈A f
(Mi(k)) = λipi(a)/Mi(a), whereby using Ṁi(a) = −ϵiMi(a)+ R̄i(a)
in Eq. (A.14) yields

ṗi(a) = λipi(a)


−ϵi +

R̄i(a)
Mi(a)

−


k∈A

pi(k)


−ϵi +
R̄i(k)
Mi(k)


.

(A.21)

Since −ϵi cancels from this equation and for non-negative
motivations we have the equality pi(a)/pi(k) = [Mi(a)/Mi(k)]λi ,
we can write

ṗi(a) = [λipi(a)/Mi(a)]

×


R̄i(a) −


k∈A

pi(k)

pi(a)
pi(k)

1/λi
R̄i(k)


. (A.22)

Appendix B. Learning to play Hawk and Dove

Here, we analyze qualitatively the vector fields of Eqs. (15)–(16)
with an average Hawk–Dove game. We used Mathematica (Wol-
fram Research, Inc., 2011) to compute equilibria, eigenvalues and
complicated algebraic expressions. We first study the interaction
between two PRL and then the interaction between PRL and IL.

B.1. PRL vs. PRL

Pure Reinforcement Learning corresponds to δi = 0. Thus,
replacing δ1 = δ2 = 0 in Eqs. (15)–(16) and using the payoffs of
the Hawk–Dove game (Table 2) produces

ṗ1 = p1(1 − p1)λ1

×


p1p2

B
2

+ (1 − p1)

p2B + (1 − p2)


B
2

− C


,

ṗ2 = p2(1 − p2)λ2

×


p2p1

B
2

+ (1 − p2)

p1B + (1 − p1)


B
2

− C


. (B.1)

This dynamical system has eight different equilibria. In addition
to the four at the corners of the state space [(0,0),(1,1),(0,1),(1,0)],
we have two interior equilibria and two symmetric (w.r.t. the line
p1 = p2) equilibria on the edges p1 = 0 and p2 = 0 (Table 3).
Performing a linear stability analysis (Hirsch et al., 2004) near each
equilibrium, we find that the vector field can be divided in three
regions, each one being the basin of attraction of a locally stable
equilibrium. The first one is the regionwhere all trajectories tend to
the equilibrium (0, 0). This equilibrium has negative eigenvalues.
Its basin of attraction is delimited by the stable manifolds of the
equilibria situated on the edges, precisely situated at


0, 1

3


and 1

3 , 0

. The nullclines give the limits of a subset of this basin: the

gray shaded area in Fig. 2A corresponds to all the points such that
ṗ1 < 0, ṗ2 < 0, p2,1 < B

2B−
√
2B(B−C)

, p2,1 < B
2B−

√
2B(B−C)

. These are
Table 3
Local Stability analysis of the equilibria for the PRL vs. PRL interaction in the
average Hawk–Dove game. (Expressions of the eigenvalues associated to the
interior equilibria are too long to fit in the table.)

Equilibrium Associated eigenvalues Eigenvalues’ sign

(0, 0)

−

B
2 , − B

2


(−, −)

(0, 1) (−B, 0) (−, 0)

(1, 0) (−B, 0) (−, 0)

(1, 1)

−

B
2 + C, − B

2 + C


(+, +)

(0, 1
3 )


−

B
3 , B

3


(−, +)

( 1
3 , 0)


−

B
3 , B

3


(−, +)

B
2B+

√
2B(B−C)

, B
2B+

√
2B(B−C)


(+, +)

B
2B−

√
2B(B−C)

, B
2B−

√
2B(B−C)


(−, +)

the points below the equilibrium ( B
2B−

√
2B(B−C)

, B
2B−

√
2B(B−C)

) and
where the vector field points south-west. Excluding this specific
region, all points below the diagonal line p1 = p2 are in the basin
of (0, 1) and all points above this line pertain to the basin of (1, 0).
The points on this line p1 = p2 (again excluding the points that
are in the basin of (0, 0)) are on the stable manifold of the interior
equilibrium ( B

2B−
√
2B(B−C)

, B
2B−

√
2B(B−C)

).

B.2. PRL vs. IL

Payoff-Informed Learning (IL) corresponds to δi = 1. Thus,
replacing δ1 = 0 and δ2 = 1 in Eqs. (15)–(16) and using the payoffs
of the Hawk–Dove game (Table 2), one obtains the dynamical
system describing learning between PRL (player 1) and IL (player
2) as

ṗ1 = p1(1 − p1)λ1

×


p1p2

B
2

− (1 − p1)

p2B + (1 − p2)


B
2

− C


,

ṗ2 = p2(1 − p2)λ2

×


p1

B
2

−


p1B + (1 − p1)


B
2

− C


. (B.2)

This determines six equilibria and three of them have at least
one positive eigenvalue. We are left with (0, 1), (1, 0) and one
interior at ( B

2C , 3B−2C
2B ). The latter equilibrium has eigenvalues

(−B +
3B2
8C +

C
2 , − B(B−2C)

4C ) where the first one is always negative
and the second one always positive. This equilibrium thus admits a
stablemanifold that splits the vector field in two regions: above the
stable manifold, this is the basin of attraction of (1, 0) and below it
trajectories go to (0, 1) (Fig. 2B).

Appendix C. Exploratory reinforcement learning

Here we analyze the equilibria of Eq. (20) in the pro-
ducer–scrounger model when λE is very large, in which case the
second term in Eq. (20) (R̄E(1) − [R̄E(1)pE + R̄E(2)(1 − pE)]) dom-
inates the first [(1 − pE) log ([1 − pE]/pE)], which we neglect. We
then find that there are three equilibria to this differential equa-
tion: p̂E = 0, p̂E = 1 and p̂E = V (2)/(V (1) + V (2)). The interior
equilibrium [V (2)/(V (1) + V (2))] is unstable since

d
dpE


pE

R̄E(1)

−

R̄E(1)pE + R̄E(2)(1 − pE)

 
pE=V (2)/(V (1)+V (2))

> 0 (C.1)
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forV (1) > V (2) ≥ 0. Thus, an ERLwill learn to go on patch type 1 if
its initial probability to go on it is greater than V (2)/(V (1)+V (2)),
and it will learn to go on patch 2 otherwise. If one draws the initial
condition at random from a uniform distribution on [0, 1], the
expected equilibrium probability to go on patch type 1 for an ERL
is

p̂E = 0 ×
V (2)

V (1) + V (2)
+ 1 ×


1 −

V (2)
V (1) + V (2)


=

V (1)
V (1) + V (2)

. (C.2)

More generally, Eq. (20) is characterized by several stable
equilibria and in order to define the expected equilibrium behavior
of ERL we follow the same argument by having a distribution
over the initial conditions. We call E the set of stable equilibria,
p̂eE the value of stable equilibrium e, and βe the size of the
basin of attraction of equilibrium e. Then, we define the expected
probability to go on patch 1 of ERL as

p̂E =


e∈E

βep̂eE, (C.3)

where, by a slight abuse of notation, we still use p̂E to denote the
average.

For instance, when we are in equilibrium regime I (Fig. 6),
i.e., when there is one stable equilibrium, there is only one term
in the sum of Eq. (C.3). When we are in equilibrium regime II and
III, there are two terms in the sum.

Appendix D. Tit-for-Tat from EWA

Here, we derive the Tit-for-Tat strategy (Rapoport and
Chammah, 1965;Axelrod, 1980; Axelrod andHamilton, 1981) from
EWA. This is not a learning rule, but it is interesting that it can be
derived from the EWA framework by appealing to the concept of
aspiration levels, which are often used in learning models (Gale
et al., 1995;Wakano and Yamamura, 2001;Macy and Flache, 2002;
Cho and Matsui, 2005; Izquierdo et al., 2007; Chasparis et al.,
2010). This provides a payoff-based (i.e., quantitative) version of
TFT, which is easier to justify in terms of neuronal decision-making
than the traditional version based on actions of opponent (which
is more qualitative). To that aim, we need that the parameters are
φi = 0, ρi = 0, δi = 1, ni,1 = 1, and λi = ∞ (Table 1), and we
subtract aspiration levels to the original motivations, that is,

Mi,t+1(a) = πi(a, a−i,t , ωt) − Li(a), (D.1)

where Li(a) is the aspiration level of individual i for action a.
In order to prove that Eq. (D.1) combinedwith Eq. (6) are indeed

Tit-for-Tat, consider an individual iwho is engaged in the repeated
play of the Prisoner’s Dilemmawith a fixed opponent playing a−i,t .
The payoff matrix is

R S
T P


,

with the traditional assumptions that T > R > P > S and
(T + S)/2 < R.

For Eqs. (D.1) and (6)with λi = ∞ to produce TFT behavior, one
needs that
Mi,t+1(C) > Mi,t+1(D), if a−i,t = C,
Mi,t+1(C) < Mi,t+1(D), if a−i,t = D,

(D.2)

where a−i,t denotes here the action of the single opponent of
individual i. Substituting the definition of the motivations (Eq.
(D.1)) into Eq. (D.2), we have

πi(C, C) − Li(C) > πi(D, C) − Li(D), if a−i,t = C,
πi(C,D) − Li(C) < πi(D,D) − Li(D), if a−i,t = D (D.3)
where Li(C) is the aspiration level of individual i for cooperation,
Li(D) its aspiration level for defection, and where we removed the
dependence of the payoffs on the environmental state ωt , because
we consider a fixed game. Substituting the payoff from the payoff
matrix, Eq. (D.1) produces TFT behavior if

R − Li(C) > T − Li(D), if a−i,t = C,
S − Li(C) < P − Li(D), if a−i,t = D,

(D.4)

which can be expressed as the single condition

T − R < Li(D) − Li(C) < P − S. (D.5)

We remark that this payoff-based version of TFTneeds that individ-
ual i has a bigger aspiration level for defection, i.e., individual i ex-
pects more of defection than of cooperation (because T −R > 0).
Also, clearly not all Prisoner’s Dilemmagames satisfy conditionD.5.
More precisely, this condition entails that defection needs to risk
dominate cooperation (T − P < R − S) for our version of TFT to
be implementable.
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