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Abstract1

The ability to respond appropriately to environmental cues is fundamental to the success of all forms of life. How-2

ever, previous theoretical studies of the evolution of plasticity make such diverse assumptions that the conditions3

under which plasticity can emerge in evolving populations are unclear when fitness is frequency-dependent. We4

study the effect of adding plastic types to symmetric evolutionary games. Since frequency dependence induces5

an evolutionary change in the environment of players, one might expect that plastic individuals who can adapt6

their phenotypes to the environment would have a fitness advantage over simpler purely genetically determined7

phenotypes. In our model, plastic individuals can detect the type of their opponent before an interaction and8

condition their action on it. Even though it might appear to be an outstanding advantage, such an ability cannot9

guarantee invasion of pure types in all games as long as plasticity is costly. We classify games according to whether10

plasticity can or cannot invade a population of pure types and become the evolutionarily stable strategy. In games11

where the standard replicator dynamics converge to a pure state, costly plasticity cannot invade an equilibrium12

population. One can guarantee co-existence of plasticity with pure types in games with mixed equilibria, mirroring13

the result of frequency-independent models that plasticity thrives when there is variance in fitness. Costly plastic-14

ity can however be locally stable in many games, but the way to achieve stability is not to play the best response15

to any possible encountered type. Rather, part of the stability success of plastic types is based on establishing16

Pareto-efficiency as residents. Zero-sum games always allow for the global stability of plastic types. This study17

offers a more principled way of thinking about the evolutionary emergence of plasticity in social scenarios and helps18

demonstrate that such an emergence is strongly dependent on the type of game individuals are faced with.19

Keywords: reaction norms; frequency dependence; natural selection; evolutionary games; variance in20

fitness.21

1 Introduction22

Most phenotypes are plastic; indeed, traits are in general only expressed in reaction to an environmental23

cue. The immune system is programmed to detect pathogens, quorum sensing in bacteria conditions gene24

expression on cell density, plant growth depends on external light via photosynthesis (Diggle et al., 2007;25

Bergstrom and Dugatkin, 2016). Being plastic thus seemingly provides a selective advantage to biological26

organisms. The conditions favoring plasticity evolution have been studied in detail in evolutionary biology,27

and a general conclusion that can be drawn from classical theory is that a varying environment is required28

for plastic traits to provide a fitness benefit (Gomulkiewicz and Kirkpatrick, 1992; Gavrilets and Scheiner,29

1993a,b). However, most of these classical models were developed under the assumption that fitness30

depends on the environment but not on the phenotype of other organisms in the population, i.e., in the31

absence of frequency dependence. It is an open question under which conditions plasticity emerges in32

frequency-dependent scenarios. In particular, it is unclear how the idea that varying environments favor33

plasticity evolution can be generalized to cases with frequency-dependent selection.34
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Because the key to plasticity evolution is variance in fitness, one actually does not require that the rules35

of the game change over evolutionary time (Dridi and Lehmann, 2014; Weitz et al., 2016; Hilbe et al.,36

2018) for frequency dependence to generate variance in fitness (Graves and Weinreich, 2017). Indeed, in37

frequency-dependent selection, other types make up part of the environment, and as long as there is some38

level of mixing between types (e.g., there is not full assortment between individuals of similar phenotype),39

any individual is going to interact with different types and hence is going to experience variance in fitness.40

These observations suggest that even in the absence of changes in the structure of the evolutionary game41

determining individuals’ fitness, there is potentially a selection pressure in favor of plasticity. In order to42

further examine this question, we must determine what it means to have a plastic phenotype in a game43

theoretical context.44

Plasticity in social evolution has been assumed – without investigating its evolutionary emergence – in45

order to address many different questions, from studies of cooperation in the iterated prisoner’s dilemma46

(Axelrod and Hamilton, 1981; Nowak, 2006; Press and Dyson, 2012; Adami and Hintze, 2013; Stewart47

and Plotkin, 2013, 2016) to investigations of signalling (Zahavi, 1975; Grafen, 1990; Maynard-Smith and48

Harper, 2004), and learning (McElreath and Boyd, 2007; Dridi and Lehmann, 2015, 2016), so we lack a49

unified view on plasticity in social evolution. These studies have provided interesting insights into our50

understanding of how natural selection shapes complex strategies for repeated interactions. However,51

complex strategies that allow an individual to condition behavior on the environment, on opponents’52

behavior, or on memory of past events are only possible if, in the first place, individuals possess the53

ability to express plastic social phenotypes. Previous work seemingly does not address the question of the54

evolutionary emergence of social plasticity, so it remains unclear what is the main advantage of plasticity55

in social evolution.56

In this paper, we adopt one of the simplest implementations of plasticity that we can think of, namely we57

assume that plastic individuals can detect the type of their opponent before an interaction takes place, and58

can condition their action on the detected type. At first, this might seem to be a considerable advantage59

to plastic types, but we will see below that even the smallest cost impedes plasticity to dominate other60

strategies in all circumstances. Another potential concern is that the genetic and molecular machinery61

necessary to perform a combination of strategy detection and appropriate response might be complex62

to evolve even for the most basic forms of plasticity. A perfect response to existing types is unlikely to63

emerge out of a background of pure genetic determination. Indeed, previous research suggests that such64

perfect responses might be very difficult to evolve (McNamara et al., 1999; André and Day, 2007). For65

this reason, we allow our plastic types to adopt any possible response to their opponents, in contrast to a66

previous work on the topic (Banerjee and Weibull, 1995), where these authors have assumed that plastic67

types always play a best response to pure types. Here, we rather study how the evolutionary success68

of plastic types depends on their response to pure types. Moreover, the perceptual system allowing one69

to infer others’ strategies might at first also be defective if it evolves from a state where there was no70

perceptual system of this kind in the ancestral population. We capture such imperfections by imposing71

a fitness cost on the expression of the plastic phenotype.72

In the following, we define a model that makes our assumptions more precise, and analyze the evolutionary73

performance of plastic types when pitted against individuals who can only express a fixed pure strategy in74

a normal-form game. We start by giving a special focus to 2×2 games and analyze the replicator dynamics75

for four standard games of cooperation: the Prisoner’s dilemma, the Stag-hunt game, the Snowdrift game,76

and a Mutualism game. We then provide classes of games where plastic types can or cannot be globally77

or locally stable under the standard replicator dynamics.78
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2 Model79

We consider the standard model of evolutionary game theory (Taylor and Jonker, 1978) of a well-mixed80

population in which players are matched randomly in pairs to play a 2-player n-action game, which is81

called throughout the pure-type game. We denote the set of actions by A. The population consists of82

n + 1 types: the first n = |A| types are called pure types, and correspond to each pure action while83

the (n + 1)-th type can detect others’ type before choosing an action. This plastic type, denoted p, has84

a strategy described by z = (z1, . . . , zn, zn+1), where zi = (zi1, . . . , zin) ∈ ∆A is the mixed strategy85

adopted by p when faced with type i ∈ A∪{p}. The symbol ∆A denotes the n-dimensional simplex, such86

that zik is the probability that the plastic type plays strategy k against type i. With these definitions,87

the Cartesian product
∏n+1

i=1 ∆A = (∆A)n+1 is the strategy set of the plastic type. The mixed strategy88

zn+1 = zp ∈ ∆A is the strategy adopted by a plastic individual when faced with another plastic individual.89

The payoff of type i ∈ A against type j ∈ A is denoted π(i, j), with the convention that the payoff goes90

to the individual whose strategy appears in the first position in parentheses. For interactions involving91

the plastic type p, we generally write the payoff π(p, i) = π(zi, i) to emphasize the dependence of the92

payoff on the mixed strategy zi of type p against i. We identify the payoffs π(zi, i) and π(i, zi) with the93

expected payoff generated by the mixed strategy of the plastic type, that is94

π(zi, i) =
∑
j∈A

zijπ(j, i) and π(i, zi) =
∑
j∈A

zijπ(i, j). (1)95

When two plastic individuals meet, they both use their strategy zp against a plastic type, so their payoff96

reads97

π(zp, zp) =
∑
i∈A

∑
j∈A

zpizpjπ(i, j), (2)98

where we assumed that both plastic types adopt the same responsive strategy. We do not consider selection99

on the plastic response itself, z, in this paper, so all plastic types will always have the same responsive100

strategy. We are interested in tracking the vector of frequencies of the types x = (x1, . . . ,xn,xn+1) ∈ ∆n+1
101

such that
∑n+1

i=1 xi = 1. We write wi(x), i = 1, . . . ,n, for the fitness of type i when the population is in102

state x which is calculated as the average payoff at state x, or103

wi(x) =

n+1∑
j=1

xjπ(i, j). (3)104

We further assume that type p pays a cost k > 0 for expressing a plastic response so that its fitness105

reads106

wp(x) =
n+1∑
j=1

xjπ(p, j)− k. (4)107

The frequency of any type i evolves according to the replicator dynamics, which are given by the differ-108

ential equations109

ẋi = xi (wi(x)− w̄(x)) , i ∈ A ∪ {p}, (5)110

where111

w̄(x) =

n+1∑
i=1

xiwi(x) (6)112

is the average fitness in the population at state x ∈ ∆n+1. A further element of notation is that we113

denote by φ(·,x0) : R+ → ∆n+1 the global solution trajectory (the flow) to eq. 5 that passes through x0,114

which means that φ(t,x0) is the vector of frequencies at time t given that the vector frequencies passes115

through x0. We denote by φi(t,x0) the ith element of φ(t,x0), with i ∈ A ∪ {p}.116
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3 2×2 games of cooperation117

We begin by studying simple examples of games in order to form intuition about the evolutionary success of118

plasticity in social interactions. More specifically, we consider four 2×2 games of cooperation traditionally119

studied in evolutionary biology: the Prisoner’s Dilemma game (PD), the Stag-hunt game (SH), the120

Snowdrift game (SD), and the Mutualism game (MG). We label the two possible actions as C (for121

Cooperation) and D (for Defection), and this generates a plastic type with a three-dimensional trait122

z = (zC , zD, zp) ∈ [0, 1]3, where zi is the probability to cooperate when facing type i ∈ {C,D, p}.123

We perform a sensitivity analysis with respect to the parameters zC , zD, zp. For each value of these124

parameters, we determine the fate of plasticity when competing in populations consisting of pure types.125

We will use the standard notation for the payoffs of 2×2 social dilemma games, often used in the biological126

literature, i.e., π(C,C) = R, π(C,D) = S, π(D,C) = T , and π(D,D) = P .127

3.1 Prisoner’s dilemma game128

In this section we define the various conditions for plasticity to invade pure types or to resist invasion,129

using the generic payoffs R, S, T , and P , so the inequalities below are valid for all games of cooperation130

studied in this article. However, in this particular section we discuss the validity of these inequalities131

for the Prisoner’s Dilemma game. The payoffs of the Prisoner’s dilemma satisfy T > R > P > S and132

R ≥ (T + S)/2. In this game, there is one dominant action, D. The outcome (D,D) is the only stable133

equilibrium of the pure-type game. It follows that the plastic type cannot invade a population of defectors,134

which means that the inequality135

π(i, i) < π(zi, i)− k (7)136

can never be satisfied for i = D. But can plasticity invade cooperators, and is it immune against invasion137

by pure types? As to the first question, setting i = C in eq. 7 we find that any strategy such that138

zC < (R − T + k)/(R − T ) would guarantee that plastic mutants invade a monomorphic population of139

cooperators (i.e., the plastic type should defect with positive probability against cooperators). As to the140

second question regarding the ability of plastic types to resist invasion by pure types, we have to solve141

the inequalities142

π(i, zi) < π(zp, zp)− k (8)143

for zD and zp, replacing i = C and i = D. In Fig. 1A–B, we show the regions of the space defined by144

combinations of (zD, zp) and (zC , zp) that satisfy eq. 8, which constitute the set of plastic types that are145

immune against the invasion by defectors and cooperators respectively in the Prisoner’s dilemma game.146

Note that eq. 8 implies that the plastic type can be immune against the invasion by defectors only if147

zp > 0 (this can be shown by setting i = D and zp = 0 in eq. 8, which then cannot be satisfied because148

T > P ).149

What are the conditions on the payoffs of the game, (R,S,T ,P ), that allow these inequalities to be150

satisfied? The feasible payoffs of a plastic type as a resident (the right-hand side of eq. 8) are on the line151

x = y within the convex hull of feasible payoffs. This means that the payoff π(zp, zp) satisfies152

min{R,P ,
T + S

2
} ≤ π(zp, zp) ≤ max{R,P ,

T + S

2
}. (9)153

Combining the above inequality with eq. 8, we then see that plasticity cannot be locally stable against154

mutant cooperators if155

max{R,P ,
T + S

2
} ≤ min{R,S}. (10)156
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Fig. 1: Regions of stability and invasion of plastic types. (A)–(F) For each social dilemma game (columns) we show
the response of the plastic type, that is the combinations (zp, zC ) (top row) and (zp, zD) (bottom row) that
allow invasion of monomorphic populations of pure types by plasticity (blue), and the ones that allow stability
of plasticity against the invasion by pure types (green). We recall here that zi is the probability to cooperate of
the plastic type against each type i ∈ {C ,D, p}. (G) Combinations of (zC , zD) that allow plasticity to invade a
population of pure types at the mixed ESS of the Snowdrift game. If (zC , zD) are chosen in the blue region of
(G) and (zC , zD , zp) are further chosen at intersection of the green and blue regions of panels (E)–(F), plasticity
is globally stable in the Snowdrift game. Parameter values: Prisoner’s dilemma game: (R,S ,T ,P) = (3, 1, 5, 2);
Stag-hunt game: (R,S ,T ,P) = (8, 0, 4, 3); Snowdrift game: (R,S ,T ,P) = (3, 0.1, 5,−1); k = 0.3.

Similarly, using eq. 8, plasticity cannot be locally stable against mutant defectors if157

max{R,P ,
T + S

2
} ≤ min{T ,P}. (11)158

The last two inequalities are not satisfied in the Prisoner’s dilemma, which means that a plastic type can159

always find a strategy that makes it stable against the invasion by pure types.160

In sum, in the Prisoner’s Dilemma game, the best outcome for a plastic type is local asymptotic stability.161

It is impossible for plasticity to invade a population at the stable equilibrium of the pure-type game162

because the plastic type cannot do better than pure defectors.163

3.2 Stag-hunt game164

We define this game as one with payoffs satisfying R > T > P > S and R+S > T +P , which entails that165

(C,C) and (D,D) are two pure Nash equilibria (NE) of the game, with (C,C) being the Pareto-dominant166

equilibrium, and (D,D) being the risk-dominant equilibrium. Consequently (C,C) and (D,D) are both167

asymptotically stable equilibria of the replicator dynamics in the pure-type game. Solving inequality 7 for168

the payoffs of the Stag-hunt game, we find that plastic types cannot invade any monomorphic population169
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of pure types. However, solving inequality 8, we find that plasticity can be locally stable (Fig. 1C–D).170

This game is a good illustration of the idea that invasion ability and local stability of our plastic types171

might be impossible to reconcile. Indeed, the plastic type needs to anti-coordinate with C and D in172

order to ensure local stability, but the best it can do in monomorphic populations of either C or D is to173

coordinate; and this best effort is not even enough to be able to invade monomorphic populations.174

We finally mention a result in the Stag-hunt game that may be of interest beyond evolutionary biology.175

Namely, in our model, costless plasticity in the Stag-hunt game is a solution to the problem of converging176

to the payoff-dominant equilibrium. Even though our main focus in this paper is on the case where177

the cost of plasticity is positive (k > 0), we mention this result because most evolutionary or learning178

processes known to us converge to the risk-dominant equilibrium, (D,D) (or stochastic evolutionary179

processes admit a stationary distribution that puts more mass on the risk-dominant equilibrium, e.g.,180

Young, 1993). Here, if one sets k = 0 and (zC , zD, zp) = (1, 0, 1), then the face of the simplex such that181

defectors are at frequency 0 is globally stable. All points on this face are neutrally stable, i.e., any mix of182

cooperators and plasticity is globally stable. In such populations, everyone cooperates and thus achieves183

the maximum possible payoff in the Stag-hunt game.184

In sum, in the Stag-hunt game, the best outcome for costly plasticity is local asymptotic stability, which185

is achieved through anti-coordination with the pure types. A plastic type cannot invade monomorphic186

populations because the best it can do is to coordinate with them but the plastic type must pay a cost. We187

finally noted that if we allow plasticity to be costless, then it can allow cooperation to be achieved from188

any initial condition, even when the population is close to the equilibrium where everyone defects.189

3.3 Snowdrift game190

In the Snowdrift game, the payoffs are such that T > R > S > P . This game thus calls for closer191

attention because it has a symmetric mixed NE. In order to achieve global stability, a plastic type must192

be able to invade any mixture of the pure types, including the NE mixture. This game is in fact an193

excellent illustration of the idea that playing the best response to every pure type does not always yield194

the best outcome for a plastic type. Indeed, in this game, playing the best response to cooperators and195

defectors guarantees that plasticity will invade monomorphic populations and the mixed NE, but this196

strategy does not guarantee local stability of plasticity. However there exists a strategy, which is not the197

best response, that guarantees global stability of plasticity, provided the payoffs allow it. Such a strategy198

is found by solving simultaneously the inequality in eq. 7, together with the following inequality199

π(xNE) < xC,NEπ(zC ,C) + xD,NEπ(zD,D)− k, (12)200

which is the condition for plasticity to invade a population at the mixed NE of the Snowdrift game. It201

turns out to be quite difficult to reduce the inequalities in eq. 7 and eq. 12 (a system of inequalities202

involving linear and quadratic ones), but we provide in Fig. 1E–G an example showing that there exists203

a strategy and payoffs of the Snowdrift game such that they all hold, i.e., such that plasticity is globally204

stable.205

The Snowdrift game also provides interesting counter-examples to conjectures that one might be tempted206

to make: if a plastic type can invade every monomorphic population, it cannot necessarily invade a207

population at the mixed NE; in Fig. 1E–G, take for example (zC , zD, zp) = (0.2, 0.4, zp). The converse208

is also false: if a plastic type can invade the mixed NE, this does not mean that it can invade every209

monomorphic population in the support of the NE. However, in any game without pure NE, there always210

exists a strategy that guarantees invasion of both mixed NE and pure monomorphic populations; in211

particular, playing the best response against every pure type always guarantees such an outcome.212

Another statement that can be proved wrong using the Snowdrift game is that games without pure213

symmetric NE always make possible global stability of plasticity. In the Snowdrift game, setting T very214
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large creates a game that has still no pure symmetric NE, but where there is no longer a strategy that215

makes plasticity globally stable. The intuitive reason is that setting T very large reduces substantially216

the upper bound on zD such that plasticity is locally stable, i.e., the (green) region of local stability of217

plasticity in Fig. 1F shrinks and then no longer intersects the (blue) region where plasticity can invade a218

monomorphic population of defectors.219

In sum in the Snowdrift game, we found that playing the best response allows the plastic type to guarantee220

co-existence with the pure types. We also found that a subset of Snowdrift games, where T is not too221

large, also allows the plastic type to become globally asymptotically stable.222

3.4 Mutualism game223

In this game we assume simply that R > 0 and S > 0, while T = P = 0, such that cooperation is a224

dominant action and the only NE of the pure-type game. Despite not being a social dilemma in the sense225

that there is no conflict between cooperation and rational behavior, this game is still interesting when226

considering the possible evolution of plasticity. Indeed in this game there are values of the payoffs for227

which plasticity is neither locally stable nor able to invade a monomorphic population of cooperators, for228

any value of (zC , zD, zp), which implies that any share of plastic mutants – irrespective of their strategy229

– will be unable to survive natural selection. From our previous analysis, we know that plasticity cannot230

invade a monomorphic population of cooperators, since cooperation is a dominant action. Plasticity can231

however invade a population of defectors by playing a sufficiently high zD. However, if S ≥ R, then eq. 10232

is satisfied, which means that plasticity cannot be locally stable. If, on the other hand, S < R then a233

plastic type can resist invasion by cooperators through defection against them. In Fig. 2, we show the234

phase portrait of trajectories in a particular Mutualism game where S ≥ R, but also for the three other235

games of cooperation studied in this section.236

In sum, in the Mutualism game, if S ≥ R, the plastic type is unable to invade or be locally stable against237

pure types, while if S < R the best outcome for plasticity is local stability.238

4 Other games239

Can we generalize some of the results we derived for 2×2 games of cooperation? Also, do they hold240

for other classes of games? In this section we first state general results regarding what is possible or241

impossible for plastic types and we then focus on the special class of zero-sum games. In all of our242

results, we assume that the pure-type game is generic (i.e., no two outcomes yield the same payoffs for243

any player).244

We begin by recalling here a classical result that we will be using throughout this section.245

Theorem (Static equilibria and the replicator dynamics; Hofbauer and Sigmund, 1998; Webb, 2007). Let
A be the set of asymptotically stable equilibria of the replicator dynamics (eq. 5), N the set of symmetric
Nash equilibria of the game, N∗ the set of strict symmetric Nash equilibria of the game, and F the set of
equilibria (fixed points) of the replicator dynamics (eq. 5). We then have

A = N∗ ⊆ N ⊆ F.

The above theorem’s purpose is mainly to allow us making statements about the replicator dynamics by246

using easier arguments based on static payoff comparisons. A simple proposition that we can now prove247

is the following one.248

Proposition 1 (Necessary conditions for global asymptotic stability of plasticity). If there exists a k̄249

such that, for all 0 < k < k̄, limt→∞ φp(t,x0) = 1, for all x0 ∈ int(∆n+1), then there exists z ∈ (∆A)n+1
250

such that:251
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Prisoner’s dilemma Stag-hunt

Snowdrift Mutualism

Fig. 2: Replicator dynamics with added plastic types in 4 games of cooperation. Each triangle represents a projection of
the 3-simplex on the 2-dimensional plane, where at each vertex the corresponding strategy (C , D, or p) is at fre-
quency 1. On the face opposed to a vertex, the corresponding strategy is absent, i.e., it is at frequency 0. These
plots are displayed for the best possible outcome that can be achieved by a plastic type. Parameter values: Pris-
oner’s Dilemma: (R,S ,T ,P) = (3,−2, 5, 1), and (zC , zD , zp) = (0, 0, 1); Stag-hunt: (R,S ,T ,P) = (8, 0, 4, 3),
and (zC , zD , zp) = (0, 1, 1); Snowdrift: (R,S ,T ,P) = (2.5, 0.1, 5,−1), and (zC , zD , zp) = (0.03, 0.45, 0.9);
Mutualism: (R,S ,T ,P) = (5, 6, 0, 0), and (zC , zD , zp) = (1, 1, 1); in all games we used a cost of k = 0.3.
Contours indicate speed with blue corresponding to slower dynamics and red corresponding to faster dynamics.
Black dot: Asymptotically stable equilibrium (a “sink”) of the replicator dynamics; gray dot: an unstable saddle;
white dot: an unstable source.

(1) π(j, j) ≤ π(zj , j), ∀j ∈ A,252

(2) π(j, zj) < π(zp, zp), ∀j ∈ A,253

(3)
∑n

j=1 xj,NEπ(zj , j) > π(xNE), ∀xNE ∈ ∆A.254

Proof. We can prove statements (1) and (3) at the same time. Statement (1) means that no pure255

strategy constitutes a strict NE in the extended game with plasticity, hence that plasticity can invade256

any monomorphic population of pure types. Statement (3) says that any xNE ∈ ∆A is locally unstable257

against the invasion by plasticity. Indeed, if there were other NE than plasticity, then they would be at258

least stable (and asymptotically stable if strict). But since plasticity is globally asymptotically stable, no259

other pure or mixed strategy is stable (and a fortiori asymptotically stable), hence there are no other NE260

to the extended game with plasticity, so (1) and (3) follow.261

Statement (2) means that the plastic type constitutes a pure strict NE of the extended game with262

plasticity. But we also know that being a strict NE is equivalent to being asymptotically stable by the263

above theorem. Since we assumed that plasticity is globally asymptotically stable, (2) follows.264

265
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The three statements of Prop. 1 have several implications and interpretations. First, statements (1) and266

(2) taken together imply that the task of achieving global stability is not trivial for the plastic type. If267

we were to take the standpoint of a plastic type that can choose its response z freely, then in order to268

maximize the chances of invading a monomorphic population consisting of type i ∈ A the plastic type269

would like to choose270

arg max
zi
{π(zi, i)} = β(i), (13)271

where we used β(·) to denote the best response function. However, statement (2) of Prop. 1 (in addition272

to our examples of games of cooperation studied above) shows that the best response is not the strategy273

that maximizes the chances of a plastic type resisting invasion by the pure types. Indeed, to achieve such274

stability against pure types, the plastic type should choose275

arg min
zi
{π(i, zi)} . (14)276

The strategy zi in eq. 14 is different from the one in eq. 13, except in zero-sum games (we investigate zero-277

sum games in more detail below), which means that optimizing invasion ability vs. stability of plasticity278

can be two conflicting tasks, as we illustrated in the Stag-hunt game above. The inequality in statement279

(2) of Prop. 1 also implies that in order to maximize its chances of resisting invasion, the plastic type280

must further take the strategy281

arg max
zp
{π(zp, zp)} . (15)282

We have seen that in games of cooperation choosing such a zp is equivalent to the plastic type cooperating283

with itself. However, if the plastic type establishes cooperation in order to be a stable strategy against pure284

types, one can expect that this opens the door to plastic free riders who defect against the established285

nice plastic types (in the Prisoner’s Dilemma game and the Snowdrift game). Hence the cooperation286

established by our plastic types seems to be only a transient state, but to to delineate the cases where287

this intuition holds true, an exhaustive study of the case where the response z of the plastic is under288

selection would be necessary (this is beyond the scope of the current paper).289

Another consequence of Prop. 1 and eq. 13 is that a plastic type cannot invade populations at a monomor-290

phic pure NE. As we have seen in the Snowdrift game example above, this does not mean that every game291

without pure NE allows for the global stability of plasticity. However, we show in the next proposition292

that in games without pure NE, there always exists a strategy that guarantees at least co-existence of293

plasticity and the pure types.294

Proposition 2 (Coexistence of plasticity and pure types in games with mixed NE). In games with no295

pure symmetric Nash equilibrium, there always exists a strategy z ∈ (∆A)n+1 such that plasticity persists296

in the population in the long run, i.e., there exists a k̄ such that, for all 0 < k < k̄, any x ∈ ∆A (i.e.,297

such that xp = 0) is unstable.298

Proof. To show that any state x ∈ ∆A such that xp = 0 is unstable, it suffices to show that there exists299

a cost k > 0 such that wp(x) > w̄(x), for all x ∈ ∆A, where we recall that w̄(x) denotes the average300

fitness in the population at state x ∈ ∆A. Note that the fitness of any type i ∈ A at state x ∈ ∆A is301

wi(x) =
∑
j∈A

xjπ(i, j). (16)302

The fitness at state x ∈ ∆A of a mutant plastic type is303

wp(x) =
∑
j∈A

xjπ(zj , j)− k. (17)304

Since the game has no pure NE, there exists for each j ∈ A and i ∈ A a strategy zj ∈ ∆A such that305

π(zj , j) ≥ π(i, j) (moreover the inequality is strict for some zj ∈ A). Let the plastic type adopt such a306

strategy z. We then have that wp(x) > wi(x). Since the average fitness w̄(x) is a convex combination307
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of the wi(x), this implies wp(x) > w̄(x). Hence the mutant plastic type increases in frequency at any308

population state x ∈ ∆A, which makes such states unstable under the replicator dynamics (eq. 5) and309

leads to the desired result.310

We just defined the conditions for plasticity to persist in populations of pure types, but these do not311

guarantee local stability of plasticity. The following proposition establishes a necessary condition for the312

inability of plasticity to be immune against invasion by pure types.313

Proposition 3 (Impossible stability of plasticity). If there exists i ∈ A such that plasticity cannot resist314

invasion by i, i.e. such that wp(ep) < wi(ep), then (i, i) is the symmetric Pareto-efficient equilibrium of315

the game.316

Proof. If plasticity cannot resist invasion by i ∈ A, this means that317

wp(ep) < wi(ep)318

π(zS
p, z

S
p) ≤ π(i, zi), ∀zi ∈ ∆A. (18)319

By way of contradiction, suppose that (i, i) is not the symmetric Pareto-efficient equilibrium of the game.320

Then there exists z̄p ∈ ∆A such that π(z̄p, z̄p) > π(i, i). Hence a strategy of the plastic type with zp = z̄p321

and zi = i would guarantee local stability of plasticity. But, by eq. 18, this contradicts our assumption322

that plasticity is not locally stable against the invasion by i. This proves the result.323

The converse is not true. If (i, i) is Pareto-efficient, it might still be possible to find strategies of the324

plastic type such that it resists invasion by i. Taking any of the three social dilemmas above, coop-325

eration is Pareto-efficient, but it is always possible to find a strategy that guarantees local stability of326

plasticity.327

4.1 Zero-sum games328

From the discussion of the previous sections, it seems that it is not easy to find classes of games where329

one can guarantee the global stability of plasticity. Looking more closely at our previous results, however,330

one might infer that if the two tasks of maximizing one’s own payoff and minimizing the other’s payoff331

are two compatible endeavours, plastic types can achieve global stability. Hence, the class of strictly332

competitive games would seem to favor plastic types. A game is strictly competitive if, for all ` ∈ A333

and any pair of strategies i ∈ A, j ∈ A, the inequality π(i, j) > π(`, j) implies that π(j, i) < π(j, `).334

In particular, maximizing one’s own payoff is equivalent to minimizing the other’s payoff. Note that in335

a strictly competitive game, all strategy pairs are Pareto-efficient since switching from any action that336

induces a higher payoff for a focal player induces a loss for his opponent. It has been shown that strictly337

competitive games are affine transformations of zero-sum games (Adler et al., 2009). We next show that338

in the class of symmetric zero-sum games without pure NE, there always exists a strategy of the plastic339

type that guarantees its global stability under the replicator dynamics.340

Proposition 4 (Global stability of costly plasticity in zero-sum games). In zero-sum games with no341

pure symmetric NE, there always exists a strategy z ∈ (∆A)n+1 of the plastic type such that it is globally342

asymptotically stable under the replicator dynamics.343

Proof. In order to show that plasticity is globally asymptotically stable, we show a stronger result, i.e.,344

that at any state x ∈ int(∆n+1), we have wp(x) > w̄(x). This implies that ẋp > 0 at any state345

x ∈ int(∆n+1) and since the simplex is a bounded set, this in turn implies that limt→∞ φp(t,x0) = 1 for346

all x0 ∈ int(∆n+1).347



5 Discussion 11

Now, to show that wp(x) > w̄(x) we will show that wp(x) > wi(x) for all i ∈ A. To do so, we write the348

fitness of a pure type i as349

wi(x) = xiπ(i, i) + xpπ(i, zi) +
∑
j 6=i
j 6=p

xjπ(i, j). (19)350

Similarly, we write the fitness of the plastic type as351

wp(x) = xiπ(zi, i) + xpπ(zp, zp) +
∑
j 6=i
j 6=p

xjπ(zj , j)− k. (20)352

In order to compare the part of the fitness that is under the summation symbol, note that since there353

is no pure NE, there exists for each j ∈ A a strategy zj of the plastic type such that π(zj , j) ≥ π(i, j).354

Hence there is a strategy z such that the term under the summation symbol is larger for the plastic type355

than the pure type, or356 ∑
j 6=i
j 6=p

xjπ(zj , j) >
∑
j 6=i
j 6=p

xjπ(i, j). (21)357

The remaining terms in the fitness are also larger for the plastic type than for type i ∈ A. Indeed, we
have π(zp, zp) = 0 for any zp ∈ ∆A. At the same time since the game is zero-sum with no pure NE, there
exists zi such that π(i, zi) < 0, thus

π(zp, zp) > π(i, zi).

Also, since π(i, zi) = −π(zi, i), and π(i, i) = 0, we also have

π(zi, i) > π(i, i).

Taken together the last three inequalities imply that there exists a k such that wp(x) > wi(x) for all358

i ∈ A at any state x ∈ int(∆n+1), hence wp(x) > w̄(x), which completes the proof.359

Note that the requirement that the game possesses no pure symmetric NE excludes symmetric 2 × 2360

zero-sum games, since these games necessarily have a dominant action. Another remark is that the proof361

is also valid for strictly competitive games since our argument is independent of affine transformations362

to the payoffs of the game. This remark allows us to apply our results to the famous good Rock-Paper-363

Scissors game, where winning yields a payoff of a, while losing induces a loss of b, and a > b (Sandholm,364

2011), which entails the payoff matrix365


R P S

R 0 −b a

P a 0 −b
S −b a 0

. (22)366

In such a game, the interior NE, xNE = (1/3, 1/3, 1/3), is globally stable under the replicator dynamics,367

with solution trajectories displaying damped oscillations around this equilibrium. In Fig. 3, we show the368

effect of adding a plastic type with a strategy described in the proof of Prop. 4 to the good RPS game. In369

this game, this creates a plastic type that plays the best response to any pure type and plays any i ∈ A370

against itself such that zi = β(i) for any i ∈ {R,P ,S} and zp = (1, 0, 0) [the choice of always playing R371

is arbitrary, in accordance with the proof of Prop. 4]. Even though the plastic type cannot invade on the372

faces of the simplex of dimension 2 (because symmetric 2×2 zero-sum games necessarily have a dominant373

action, and hence a pure symmetric NE), it achieves a larger payoff than any fully mixed population.374

This explains why it is globally stable in the interior of the simplex.375
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“Good” Rock-Paper-Scissors game

R

P

S

With added plastic type

Fig. 3: Replicator dynamics in the original good RPS (top), and with added plastic type (bottom). The 3-strategy
simplex was produced using our own code (available), while the 4-strategy simplex was produced using Dynamo
(Franchetti and Sandholm, 2013). Parameter values: Payoff matrix of eq. 22 with a = 2 and b = 1; zR =

(0, 1, 0); zP = (0, 0, 1); zS = (1, 0, 0); zp = (1, 0, 0).

5 Discussion376

In this work, we considered the introduction of plastic types in populations consisting of simple individuals377

adopting pure strategies in evolutionary symmetric games. We showed that despite having the capacity of378

responding in any possible way to other types in the population, there does not exist a general strategy for379

plasticity to eliminate pure types from the population. There are several explanations to this. The first380

one is that in games with pure symmetric Nash equilibria, costly plasticity cannot invade an equilibrium381

population. Moreover, we demonstrated that there is often a conflict between optimizing invasion success382

and optimizing stability for plastic types, the best illustration of this result being the Stag-Hunt game,383

where these two tasks (optimizing invasion ability versus stability) lead to totally different behavioral384

responses of the plastic types. We also saw that the success of plasticity is dependent on the class of385

games played in the population. There are games, such as zero-sum games without pure symmetric NE,386

where there always exists a strategy that grants plasticity global stability under the replicator dynamics.387

On the other hand, there are games, such as certain Mutualism games, where plasticity can neither invade388

an equilibrium population nor be stable against the invasion by pure types.389

In our more detailed investigation of games of cooperation, we found that in the Prisoner’s Dilemma and390

the Snowdrift game, plastic types should cooperate with themselves with a strictly positive probability391

in order to be immune against the invasion by pure types. However, invasion success of pure populations392
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by plasticity is generally uncorrelated to playing a cooperative strategy. In the Stag-hunt game it is just393

impossible for costly plasticity to invade an equilibrium population. However, costless plasticity is able394

to do so, and can even establish cooperation (the payoff-dominant outcome) in a population that was395

initially at equilibrium for defection (the inferior risk-dominant outcome). This result is similar to what396

Robson (1990) found in an earlier work (we compare our work with that of Robson, 1990, in more detail397

below).398

It is insightful compare our results to those of previous studies of the evolution of plasticity. In particular,399

previous work on frequency-independent selection (e.g., Gomulkiewicz and Kirkpatrick, 1992) has revealed400

that variance in fitness is a key factor driving the evolution of plasticity. In our setting, we notice that401

in games with pure Nash equilibria (NE), the population does not experience variance in payoffs at402

equilibrium. Hence, it makes sense that there is no advantage to adapt behavior to different circumstances,403

since there is only one circumstance which is to face the pure type that is evolutionarily stable. However,404

in games without pure NE, there is always variance in payoffs because one might be matched with any405

type in the support of the mixed NE of the game. This explains why plasticity can always invade a406

mixed NE, because it has the possibility to express different responses to the different existing types and407

potentially obtain a payoff that is greater than the NE payoff. Altogether, these results suggest that in408

general the ability to collect more fitness-relevant information is not always beneficial, as long as this409

information is costly to acquire (even if costs are very small), as other studies of the evolution of learning410

have previously shown (Wakano et al., 2004; Nakahashi et al., 2012; Aoki and Feldman, 2014; Dridi and411

Lehmann, 2015).412

While our results fit well within the literature on plasticity evolution theory, there is also empirical413

evidence that our assumptions about plasticity correspond to some extent to real-world instances of414

plastic phenotypes. If the evolving behavioral trait of interest is linked to morphological or hormonal415

characteristics, then it could be possible for a plastic type to base their strategy on, e.g., a chemical416

detection mechanism, vision or smell. This is the case for many traits that indicate the quality of an417

individual, which will then determine the payoff of individuals interacting with it, such as size or weight418

in fights (Riechert, 1978; Maynard-Smith and Harper, 2004; Arnott and Elwood, 2009); this is also the419

case for traits that indicate the compatibility and quality of potential mates (Potts et al., 1991; Roberts420

and Gosling, 2003).421

The ability to gather information about conspecifics or the environment is critical in evolution and,422

as a consequence, the proposition that individuals with more information may have an evolutionary423

advantage in social interactions is not new. Robson (1990) developed a model where his plastic type424

could only distinguish between plastic and non-plastic types and condition their action on this cue. He425

assumed that plasticity was costless and found in particular that plasticity can invade a population at426

the inferior equilibrium of a coordination game, and lead to the superior payoff-dominant equilibrium;427

however his plastic type could not co-exist with the superior pure type that plays the payoff-dominant428

action, in contrast to what we found. Banerjee and Weibull (1995) studied a very similar model to ours,429

but constrained the plastic type to play a best response to every pure type. We saw that this best430

response assumption is not the best strategy for plastic types when it comes to evolutionary stability.431

This phenomenon is exemplified by the Snowdrift game, where playing the best response to every pure432

type does not allow plasticity to be locally stable against the invasion of pure mutants; but there are433

Snowdrift games where playing a strategy different than the best response allows plasticity to be not only434

locally but globally stable. Our model is thus an extension of the ideas developed in these two earlier435

studies (Robson, 1990; Banerjee and Weibull, 1995).436

From a broader perspective, given the recent renewed interest in the evolution of strategies in the repeated437

Prisoner’s dilemma (Press and Dyson, 2012; Adami and Hintze, 2013; Stewart and Plotkin, 2013, 2016),438

our work helps bridge the gap between these recent studies and classical work on the evolution of pure439

non-plastic strategies in one-shot games (Hofbauer and Sigmund, 1998). Indeed, in order to be able to440
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express a repeated-game strategy, an organism must first have the capacity to express a plastic social441

phenotype. Another recent trend is the focus on environmental variation in social evolution (Ashcroft442

et al., 2014; Dridi and Lehmann, 2014; Weitz et al., 2016), and our study reminds that environmental443

variation is already embedded within social evolution through frequency-dependent payoffs (Graves and444

Weinreich, 2017), which is why we find that plasticity may evolve even in the absence of variation in the445

game structure itself.446

Our model finally introduces new questions and calls for further research on the topic. Most notably,447

we ignored evolution of the plastic response itself, but it is natural to imagine that if one plastic type448

successfully invades, other plastic mutants with a different behavioral response might appear and displace449

the original plastic type; there is then no guarantee that the optimal plastic type will also be evolutionarily450

stable. Indeed, Robson (1990) showed that in the Prisoner’s dilemma, if a first plastic mutant might451

successfully invade and establish cooperation, the introduction of further plastic mutants might lead to452

the loss of cooperation. A possible avenue for future research would be to see if this result applies to our453

setting as well, in the Prisoner’s dilemma and other games.454

One might argue that the ability to express mixed strategies is what gives plasticity its strategic advantage455

rather than the ability to be plastic. It is not the case for invasion ability because best response to pure456

types is always a pure strategy, so a plastic type only able to play pure strategies would not be disfavored457

with respect to our plastic types. However the ability to play mixed strategies is critical when looking458

for plastic types that are immune against the invasion by pure types.459

Another extension of our work would be to consider the possibility that the game payoffs change as a460

function of time, and in this setting a plastic type would be able to condition its action not only on461

the type of the opponent but also on the type of game being played. Heller (2004) modelled a situation462

where some individuals could detect the state of the environment and the opponent’s type in a context463

of a fluctuating game, but she assumed that plastic types (which she calls learning agents) only play the464

best response to pure types. It would be interesting to see what would happen if we do not constrain465

the plastic response to be the best response, since we saw in our model that the best response does not466

always yield the best outcome for plasticity. These and other extensions will help us better understand467

the evolution of complex strategies in realistic changing environments.468
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